

White Paper

Breakthrough AES Performance with

Intel® AES New Instructions

Kahraman Akdemir, Martin Dixon, Wajdi Feghali, Patrick Fay, Vinodh Gopal, Jim Guilford,
Erdinc Ozturk, Gil Wolrich, Ronen Zohar

Abstract

Intel continues to provide leadership in developing instruction-set extensions with the
recently released ISA support for the Advanced Encryption Standard (AES). This paper
presents the excellent performance of the AES algorithm on the Intel® Core™ i7 Processor
Extreme Edition, i7-980X, using the AES New Instructions (AES-NI). Performance results for
serial and parallel modes of operation are provided for all key sizes, for variable numbers of
cores and threads. These results have been achieved using highly optimized
implementations of the AES functions that can achieve ~1.3 cycles/byte on a single-core
Intel® Core™ i7 Processor Extreme Edition, i7-980X for AES-128 in parallel modes. The paper
also has a brief description of how to code to achieve these results and a reference to the
complete source code.

1

Introduction

AES is one of the most popular block ciphers used in cryptography and is specified in the
FIPS Standard [1]. It works on 128-bit blocks with a choice of three key sizes of 128, 192
and 256 bits. Intel introduced 6 new instructions in the Intel® Core™ i7 Processor Extreme
Edition, i7-980X processor to accelerate the execution of the AES algorithm - AESENC,
AESENCLAST, AESDEC, AESDECLAST, AESIMC, and AESKEYGENASSIST.

Instruction Description
AESENC xmm1, xmm2/m128 Perform one round of an AES encryption

flow, operating on a 128-bit data (state)
from xmm1 with a 128-bit round key from
xmm2/m128.

AESENCLAST xmm1, xmm2/m128 Perform the last round of an AES encryption
flow, operating on a 128-bit data (state)
from xmm1 with a 128-bit round key from
xmm2/m128.

AESDEC xmm1, xmm2/m128 Perform one round of an AES decryption
flow, using the Equivalent Inverse Cipher,
operating on a 128-bit data (state) from
xmm1 with a 128-bit round key from
xmm2/m128.

AESDECLAST xmm1, xmm2/m128 Perform the last round of an AES decryption
flow, using the Equivalent Inverse Cipher,
operating on a 128-bit data (state) from
xmm1 with a 128-bit round key from
xmm2/m128.

AESIMC xmm1, xmm2/m128 Perform the InvMixColumn transformation
on a 128-bit round key from xmm2/m128
and store the result in xmm1

AESKEYGENASSIST xmm1,
xmm2/m128, imm8

Assist in AES round key generation using an
8-bit Round Constant (RCON) specified in the
immediate byte, operating on 128 bits of
data specified in xmm2/m128 and stores the
result in xmm1.

Table 1: AES-NI (New Instructions) Summary

Detailed information about these instructions can be found in the AVX instruction-set
reference [2] and the white-paper by S Gueron [4] of Intel. Gueron’s white-paper also
mentions that the new instructions provide important security benefits over software-
based AES implementations.

This paper describes the unprecedented performance of the AES algorithm on the Intel®
Core™ i7 Processor Extreme Edition, i7-980X processor. We show the performance of a

2

serial and a parallel mode of operation of the cipher, measured on varying numbers of cores
and threads. The Intel® Core™ i7 Processor Extreme Edition, i7-980X processor that was
used for this study ran at 3.33 GHz frequency and had 6 cores with hyper-threading enabled
(effectively giving a maximum of 12 threads). We measured the results without turbo-mode.
Turbo mode is disabled just to simplify the performance analysis. Enabling turbo mode will
result in the same or better performance. To achieve these results, we developed highly
optimized implementations of AES encrypt/decrypt functions for the various key-sizes and
modes. The library of source code can be found in [3].

This paper is organized as follows. We start with a brief description of the performance
testing methodology. In the next section, AES encryption/decryption algorithms that work in
CBC mode are described. We then provide an overall performance summary and discussion.
The last section discusses possible improvements that can be achieved on the AES key
scheduler.

Methodology

In this section, we briefly explain the performance measurement methodology. We created a
test configuration structure that builds tests using the provided configuration options, runs
them on the Intel® Core™ i7 Processor Extreme Edition, i7-980X processor, and reports the
timing. A specific test has various configuration parameters such as the number of threads,
buffer size of the input, data alignment in the memory, name of the key generation
procedure, and the name of the main AES algorithm.

Depending on the number of required threads, the AES algorithm can be run on up to 12
threads on 6 cores, as each core is capable of running 2 threadswith Intel® Hyper-Threading
Technology (Intel® HT Technology) enabled. The performance testing structure controls the
multiple threads. When a test is called, it is first built using the provided options and the
required algorithm is run 1000 times to warm up the cache. The timing is measured using
the rdtsc() function which returns the processor time stamp counter (TSC). The TSC is the
number of clock cycles since the last reset. The ‘TSC_initial’ is the TSC recorded before the
specific AES algorithm is called . Then, the function is called for the specified number of
times. After the runs are complete, the rdtsc() is called again to record the new cycle count
’TSC_final’. The effective cycle count for the called routine is computed using

of cycles = (TSC_final-TSC_initial)/(number of iterations).

AES Modes of Operation

There are many block cipher modes such as the cipher-block-chaining (CBC) mode.
Performance of the modes varies primarily due to the inherent serial or parallel nature of
the processing. CBC-Encrypt mode has a serial processing flow and exhibits the worst-case
performance behavior. CBC-Decrypt, however, can be explicitly parallelized with efficient

3

software coding for best performance. We show the performance of these two modes for all
key-sizes:

• AES CBC Mode Encryption (Serial): The result (cipher text) of a block encryption is

used as an input to the encryption of the following block. It is described by the
equation: Cipher[n] = EncryptK(Cipher[n-1] ⊕ Plaintext[n])

• AES CBC Mode Decryption (Parallel): This mode can be parallelized due to property in
the equation: Plaintext[n] = DecryptK(Cipher[n]) ⊕ Cipher[n-1]. The plaintext for
many blocks can be processed in parallel since they depend only on ciphertext blocks
which are all available. We implemented this mode decrypting 4 blocks in parallel. The
code essentially performs round i for 4 consecutive blocks followed by round i+1 for
these 4 blocks until the last round. After the final round, the next 4 blocks are
processed in an iterative loop. Note that for buffer-sizes that are not multiples of 4
blocks, the remainders are handled one-by-one at the beginning. We could achieve
approximately the same performance by processing 3 blocks in parallel, but for
efficiency of implementation (specifically, calculating number of remainder blocks),
we chose 4 blocks.

CBC Encrypt performance can be improved on a single-thread in some applications that
permit processing multiple independent buffers concurrently. For instance, if we process 3
(or more) independent buffers concurrently, the latency of the instructions can be hidden
perfectly achieving approximately the same performance of CBC Decrypt. Such optimizations
are however, out of the scope of the current paper and will not be considered in the
performance discussions.

Key Generation
In our implementations of AES Encrypt/Decrypt, for each of these modes, key scheduling is
done at the beginning (but within the timing loop) before the Encrypt/Decrypt routines are
called for a given data buffer. For the encryption operation, an optimized key scheduling
algorithm is used (with the AESKEYGENASSIST instruction) to generate the round keys. The
decryption round keys are computed in two steps. First, the encryption round keys are
generated using the encryption key scheduler routine. Next, the AESIMC instruction is
utilized in order to compute the decryption round keys.

The AES Encrypt/Decrypt routines take the expanded round keys as their input and
implement the encryption/decryption round operations (using the AESENC, AESENCLAST,
AESDEC, AESDECLAST instructions) thereafter on the given data buffer. For a given buffer,
we measure the total time for the 2 steps as described by the following pseudo-code:

for (number of iterations){
round_keys[] = expand_key_schedule(user Key);
output = encrypt/decrypt(input, buffer_length, round_keys[]);

4

Performance Results

The performance of AES in CBC mode has been measured on the Intel® Core™ i7 Processor
Extreme Edition, i7-980X using our highly optimized implementations. The trending values
for large buffers (32Kbyte) in terms of cycles per byte have been shown in Table 2.

 Parallel CBC decrypt is ~3x
faster than serial CBC encrypt

Cycles/Byte
CBC Encrypt CBC Decrypt

128 192 256 128 192 256

1 Core 1 Thread 4.20 4.95 5.70 1.30 1.56 1.80
2 Cores 2 Threads 2.11 2.48 2.86 0.67 0.80 0.91
4 Cores 4 Threads 1.06 1.25 1.44 0.35 0.41 0.47
6 Cores 6 Threads 0.72 0.84 0.97 0.25 0.29 0.33

6 Cores 12 Threads 0.36 0.43 0.49 0.24 0.28 0.32

Hyper-threading provides ~2x speedup on CBC encrypt

Table 2: Performance Summary in Cycles/Byte

Note that on any row (except for the ‘6 cores and 12 threads’ case which will be explained
shortly), for a specific key size, there is a ratio of ~3 between CBC encryption and
decryption. In other words, CBC decryption performs 3X faster than CBC encryption (e.g. 1.3
cycles/byte compared to 4.2 for AES128 on 1 core). For the serial (encrypt) case, we are
limited by the latency of the AES round instructions in the AES pipeline, which is 6 cycles.
However, for the parallel (decrypt) case, the algorithm is only limited by the throughput of
these instructions, which is 2 cycles.

In order to show the effect of hyper-threading on the performance, we compare the ‘6 cores
and 6 threads’ case with the ‘6 cores and 12 threads’ case. All the cases are single threaded
except the ‘6 cores and 12 threads’ case: in the ‘6 cores and 12 threads’ case, each core has
two threads on it.

An important observation is the ~2Xspeed scaling of the 12 thread case in comparison to
the 6 thread case for the CBC encryption. CBC encryption is a serial mode which does not
fully utilize the AES pipeline. To be more specific, it only uses 1/3rd of the pipeline.
Consequently, when we have two threads running on a single core, pipeline utilization
increases to 2/3rd and the number of blocks that are processed will be twice as many as the
single-thread. Hyper-threading in CBC decryption provides little performance gain because
CBC decrypt already utilizes the AES pipeline fully due to its parallel nature.

Detailed graphs that show performance in these modes for smaller buffers can be found in
Appendix A. In particular, note the excellent performance than can be achieved for buffers

5

as small as 64-bytes: on a single core with 1 thread, AES128 CBC-Encrypt can be performed
at 5.31 cycles/byte and AES128 CBC-Decrypt can be performed at 4.00 cycles/byte. The
performance in Appendix A includes the key expansion. See Appendix B for details of the
system on which the results were obtained

The trending values for large buffers (32Kbyte) in terms of cycles per block (16 byte-blocks)
have been shown in Table 3. This represents the same data in Table 2 multiplied by 16 and
is merely shown for convenience.

Cycles/Block
CBC ENC CBC DEC

128 192 256 128 192 256

1 Core 1 Thread 67.21 79.22 91.23 20.81 25.00 28.86
2 Cores 2 Threads 33.73 39.74 45.75 10.65 12.74 14.63
4 Cores 4 Threads 17.01 20.01 23.03 5.56 6.59 7.58
6 Cores 6 Threads 11.46 13.45 15.47 3.92 4.61 5.28

6 Cores 12 Threads 5.83 6.83 7.86 3.79 4.47 5.15

Table 3: Performance Summary in Cycles/Block

Implementing more efficient key scheduling

As discussed earlier the key scheduling for the AES algorithms implemented in this paper are
handled at the beginning before the encryption/decryption starts. However, this might
affect the performance for small buffers. In this section, we briefly describe an improved
method.

We propose generating the round keys on the fly for best performance. In other words,
merging the initial round key generation process with encryption/decryption could minimize
the performance overhead caused by the initial key generation latency. In case of CBC
encryption, due to its serial nature, one block of data is encrypted (Enc1) while the round
keys are generated (KG). Next, one-by-one block encryption continues. This idea is illustrated
in the following figure.

 Enc1 Enc1 KG Enc1

Figure 1: Efficient key generation for CBC encryption

CBC decryption case is also handled in a similar fashion. Since our implementation of this
algorithm works in a four block parallel fashion, we propose handling the remainder blocks
(modulo 4) at the beginning in parallel with the key generation (KG). More specifically, for a
buffer size of N blocks, depending on the value of the remainder (rem = N % 4) where % is
the modulus operator, we do one of the following:

6

• [KG Dec3] when rem = 3.
• [KG Dec2] when rem = 2.
• [KG Dec1] when rem = 1.
• [KG Dec4] when rem = 0.

Then, four-by-four decryption (Dec4) continues (N-rem)/4 times until the end of the buffer is
reached. The notation Deci represents a method of processing i blocks in parallel. Note that
the approach we present here is a generic one which is applicable to all buffer sizes.

The idea is summarized in the following figure.

OR KG Dec4 OR OR KG Dec3 KG Dec2 KG Dec1

 Dec4

 Dec4

(N-rem)/4

Figure 2: Efficient key generation for CBC decryption

The following example code segments show how this idea could be implemented for CBC
encryption and decryption. For the encryption case, the shown example is for [KG Enc1], and
for the decryption case, the shown example is for [KG Dec4]. The enc_key_expansion_128
routine in both of these code segments takes the previous round’s encryption key in xmm4
register as its input and returns the current round encryption key in the same register. For
decryption key expansion, we first compute the encryption round keys, then convert them
into decryption round keys using the AESIMC instruction. The computed round keys are then
used to encrypt/decrypt the data blocks.

enc_key_expansion_128 ; Generating enc. round key 1
aesenc xmm0, xmm4 ; 1. block round 1 encryption

enc_key_expansion_128 ; Generating enc. round key 1
aesimc xmm5, xmm4 ; Generating dec. round key 1
aesdec xmm0, xmm5 ; 1. block round 1 decryption
aesdec xmm1, xmm5 ; 2. block round 1 decryption
aesdec xmm2, xmm5 ; 3. block round 1 decryption
aesdec xmm3, xmm5 ; 4. block round 1 decryption

Figure 3: Encryption (top) and decryption (bottom) code examples

7

Conclusion
We are able to achieve excellent AES performance on the Intel® Core™ i7 Processor Extreme
Edition, i7-980X using the new instructions. With optimized code, it is possible to achieve
~0.24 cycles/byte on 6 cores for AES128 on parallel modes for large buffers.

When we run a single thread per core, the serial modes such as CBC Encrypt are ~3X slower
than the parallel modes. Whereas the serial modes are slower (~0.72 cycles/byte on 6 cores
and 6 threads), hyper-threading gives ~2X performance gain on these modes (~0.36
cycles/byte on 6 cores, 12 threads) compared to running a single-thread per core.

It is possible to improve the key-scheduling by interleaving key-scheduling with the
encrypt/decrypt code for better performance on small buffers.

References

[1] FIPS PUB 197, Advanced Encryption Standard (AES), Nat’l Inst. of Standards and
Technology, Nov. 2001, http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[2] http://softwarecommunity.intel.com/isn/downloads/intelavx/Intel-AVX-Programming-
Reference-31943302.pdf

[3] http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-
aes-ni/

[4] Advanced Encryption Standard (AES) Instructions Set Rev 3, Shay Gueron
http://software.intel.com/en-us/articles/advanced-encryption-standard-aes-instructions-set/

8

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://softwarecommunity.intel.com/isn/downloads/intelavx/Intel-AVX-Programming-Reference-31943302.pdf
http://softwarecommunity.intel.com/isn/downloads/intelavx/Intel-AVX-Programming-Reference-31943302.pdf
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://software.intel.com/en-us/articles/advanced-encryption-standard-aes-instructions-set/

System Details

Appendix A – Performance Details

4.2

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

6.6

64 128 192 256 320 384 448 512

C
yc

le
s

Pe
r B

yt
e

Input Buffer Size (Bytes)

AES 256
AES 192
AES 128

Figure 4: CBC ENC Performance Summary for buffer sizes smaller than 512 bytes

9

1.0
1.5

2.0
2.5

3.0
3.5

4.0
4.5

5.0
5.5

6.0
6.5

7.0
7.5

64 128 192 256 320 384 448 512

C
yc

le
s

Pe
r B

yt
e

Input Buffer Size (Bytes)

AES 256
AES 192
AES 128

Figure 5: CBC DEC Performance Summary for buffer sizes smaller than 512 bytes

10

Appendix B – System Configuration

CPU: Intel(R) Core(TM) i7 CPU X 980 @ 3.33GHz (Engineering Sample, 6 cores, 12 logical
threads. Turbo disabled. When we show the multi-threaded, not hyper-threaded
performance, we are careful to ensure that each software thread runs on a different core.
Chipset: Intel X58.
Memory: 6 GBs DDR3 at 667 MHz. Note that timings in this paper are expected to be
independent of memory speed since we are running in cache.
OS: Microsoft Windows* 7 (6.1) Ultimate Edition (Build 7600), 64bit
YASM version: yasm-0.8.0
Timing source code contained in sample source code library [3] in
intel_aes_lib\src\aessampletiming.cpp.
Compiler for aessampletiming.cpp: VS2008 SP1 (x64). Options: /O2 /Zi

11

12

Notices

Copyright © 2010, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others

Intel processor numbers are not a measure of performance. Processor numbers differentiate features
within each processor family, not across different processor families. Go to:
http://www.intel.com/products/processor%5Fnumber/

Performance tests and ratings are measured using specific computer systems and/or components and
reflect the approximate performance of Intel products as measured by those tests. Any difference in
system hardware or software design or configuration may affect actual performance. Buyers should
consult other sources of information to evaluate the performance of systems or components they are
considering purchasing. For more information on performance tests and on the performance of Intel
products, go to: http://www.intel.com/performance/resources/benchmark_limitations.htm

Intel, the Intel logo, Intel Core and Core Inside are trademarks of Intel Corporation in the U.S. and
other countries

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE
FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR
INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A
SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them. The information
here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before
placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel
literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/#/en_US_01

Hyper-Threading Technology requires a computer system with a processor supporting HT Technology
and an HT Technology-enabled chipset, BIOS and operating system. Performance will vary depending
on the specific hardware and software you use. For more information including details on which
processors support HT Technology, see here

http://www.intel.com/products/processor%5Fnumber/
http://www.intel.com/performance/resources/benchmark_limitations.htm
http://www.intel.com/#/en_US_01
http://www.intel.com/info/hyperthreading

	/
	Breakthrough AES Performance with
	Intel® AES New Instructions
	Kahraman Akdemir, Martin Dixon, Wajdi Feghali, Patrick Fay, Vinodh Gopal, Jim Guilford, Erdinc Ozturk, Gil Wolrich, Ronen Zohar
	Abstract
	Introduction
	Methodology
	AES Modes of Operation
	Key Generation

	Implementing more efficient key scheduling
	Conclusion
	References
	System Details
	Appendix A – Performance Details

	Appendix B – System Configuration

