
Hands-on Workbook

ASPLOS 2008 Pin Tutorial

Table of Contents

Hands-on Objective! 2

Overview of Pin! 3

Instrumentation Granularity ! 3

Applying a Pintool to an Application! 4

Installing and Running Today"s Examples! 4

Understanding Instruction Counting! 5

Passing Instrumentation Arguments (IARG"s)! 6

Generic and Portable Inspection API! 8

Debugging a Pintool! 11

Examining Routines in an Image! 14

Replacing a Routine in Probe Mode! 17

Extending Function Signatures! 20

Build Your Own Pin Tool -- strace Using Pin! 23

Conclusion! 26

ASPLOS 2008 Pin Tutorial

Hands-on Tutorial Worksheet 1

Hands-on Objective

In today’s tutorial you will learn to build your first Pintool, modify the tool, as well as debug the

Pintool. We will start with a simple “icount” Pintool that will evolve from doing instruction

counting to tracing instruction and memory addresses. In the process of doing so, we will also

learn to debug a Pintool using the system’s native debugger. Overall, you will gain insight into

the ease of using Pin for program introspection.

In the following exercises, we will step through examples in the Linux environment on a IA32-bit

platform. Many of the discussed examples are available for download along with the Pin kit. The

kit contains source code for a large number of other example instrumentation tools such as

basic block profilers, cache simulators and instruction trace generators. It is easy to derive new

tools using the examples as templates.

ASPLOS 2008 Pin Tutorial

Hands-on Tutorial Worksheet 2

Overview of Pin

The best way to think about Pin is as a "just in time" (JIT) compiler (a.k.a dynamic compiler).

The input to this compiler is not bytecode, but a regular executable. Pin dynamically re-compiles

the application during execution. Dynamically compiled code is cached and reused for boosted

performance.

Instrumentation of the application is done by the Pin Tool during dynamic compilation. The

interface between Pin and the Pin Tool are callback routines. The Pintool registers callbacks,

which Pin invokes as it generates new code. This allows the Pintool to decide the

instrumentation and analysis “on the fly.” Conceptually, instrumentation consists of (1) deciding

where and what code is inserted (instrumentation code) and (2) executing the inserted

instrumentation (analysis code). The instrumentation calls target arbitrary functions within the

Pintool. Pin ensures that register state is saved and restored as necessary for arguments to be

passed to the functions. In addition to pure program introspection, Pin is also capable of altering

application behavior.

Instrumentation Granularity

As described above, Pin's instrumentation is "just in time" (JIT). Instrumentation occurs

immediately before a code sequence is executed for the first time. We call this mode of

operation trace-level instrumentation.

Trace instrumentation lets the Pintool inspect and instrument an executable one dynamic trace

of instructions at a time. Pin breaks a trace into basic blocks, BBLs. A BBL is a single entrance,

single exit sequence of instructions. It is often possible to insert a single analysis call for a BBL,

instead of one analysis call for every instruction (which incurs more runtime overhead). Pin also

offers an instruction instrumentation mode which lets the tool inspect and instrument an

executable a single instruction at a time. In this tutorial, we will focus on using the instruction

instrumentation API’s as they are used frequently, provide most insight and showcase Pin’s rich

API.

Sometimes, however, it is useful to look at a larger granularity such as an entire image or entire

routine/function. Image instrumentation lets the Pintool inspect and instrument an entire binary,

IMG, when it is first loaded. A Pintool can walk the sections, SEC, of the image

(.text, .data, .rodata etc.), the routines, RTN, of a section, as well as the instructions, INS

contained within a routine. Image instrumentation depends on the presence of symbol

information in the executable.

Routine instrumentation lets the Pintool inspect and instrument an entire routine before the first

time it is called. A Pintool can walk the instructions of a routine. Instrumentation can be inserted

so that it is executed before or after a routine is executed, or before or after an instruction is

executed.

ASPLOS 2008 Pin Tutorial

Hands-on Tutorial Worksheet 3

Applying a Pintool to an Application

An application and a tool are invoked as follows:

pin [pin-option]... -t [toolname] [tool-options]... -- [application] [application-option]

The following Pin-options are frequently used:

! •! -t toolname: specifies the Pintool to use.

! •! -pause_tool n: is a useful Pin-option which prints out the process id and pauses Pin for n

! ! seconds to permit attaching with gdb.

! •! -pid pid: attach Pin and the Pintool to an already running executable with the given

process id.

The tool-options follow immediately after the tool specification and depend on the tool used.

Everything following the -- is the command line for the application.

Installing and Running Today!s Examples

Login: pinhead[0-25]@suburban.colorado.edu

Password: pinme2008!

1) Install a kit by unpacking a kit and changing into the directory:

$ tar zxf pin-2.3-17236-gcc.3.4.2-ia32-linux.tar.gz

$ cd pin-2.3-17236-gcc.3.4.2-ia32-linux

2) Build the “pintool.so” Pintool in the directory:

$ cd Tutorial/

$ make pintool.so

3) Run the Pintool:

$../Bin/pin -t ./pintool.so -- /bin/ls

Makefile atrace.o imageload.out itrace proccount

Makefile.example imageload inscount0 itrace.o proccount.o

atrace imageload.o inscount0.o itrace.out

Count 422838

$

ASPLOS 2008 Pin Tutorial

Hands-on Tutorial Worksheet 4

Understanding Instruction Counting

Let us take a peek inside the tool to gain an understanding of how to write our own tool. The

example we just ran is pintool.cpp, which instruments every instruction in the program to

count the total number of instructions executed. The Pintool works by inserting an

instrumentation call to the analysis function docount that increments a counter. The

instrumentation call tells Pin to setup instrumentation such that docount is called upon

instruction execution. In addition, PIN_AddFiniFunction tells Pin to call the function Fini

when the program exits so that the variable can be printed to the screen. Take a moment to

understand the detailed comments below:

#include <stdio.h>

#include "pin.H"

using namespace std;

// The running count of instructions is kept here

UINT64 icount = 0;

// This function is called before every instruction is executed

VOID docount() { icount++; }

// Pin calls this function every time a new instruction is encountered

VOID Instruction(INS ins, VOID *v)

{

 // Insert a call to docount before every instruction

 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) docount, IARG_END);

}

// This function is called when the application exits

VOID Fini(INT32 code, VOID *v)

{

 fprintf(stderr, "%llu\n", icount);

}

// argc, argv are the entire command line, including pin -t <toolname> -- ...

int main(int argc, char * argv[])

{

 // Initialize pin

 PIN_Init(argc, argv);

 // Register Instruction to be called to instrument instructions

 INS_AddInstrumentFunction(Instruction, 0);

 // Register Fini to be called when the application exits

 PIN_AddFiniFunction(Fini, 0);

 // Start the program, never returns

 PIN_StartProgram();

 return 0;

}

ASPLOS 2008 Pin Tutorial

Hands-on Tutorial Worksheet 5

Passing Instrumentation Arguments (IARG!s)

In the previous example, we did not pass any arguments to the analysis procedure (docount). In

this example, we will extend the tool to pass arguments. Pin allows us to pass a variety of

arguments such as the instruction pointer, current value of registers, effective address of

memory operations, constants, etc.

With a small change, we can turn the previous instruction counting example into a Pintool that

prints the address of every instruction executed. This tool is useful for understanding the

control flow of a program for debugging, or in processor design when simulating an instruction

cache.

Expected output of the Pintool:

$../Bin/pin -t pintool.so -- /bin/ls

Makefile atrace.o imageload.out itrace proccount

Makefile.example imageload inscount0 itrace.o proccount.o

atrace imageload.o inscount0.o itrace.out

$ head itrace.out

0x40001e90

0x40001e91

0x40001ee4

0x40001ee5

0x40001ee7

0x40001ee8

0x40001ee9

0x40001eea

0x40001ef0

0x40001ee0

$

ASPLOS 2008 Pin Tutorial

Hands-on Tutorial Worksheet 6

Follow the below steps to modify pintool.cpp to perform instruction address tracing:

Step 1: Change the arguments to INS_InsertCall to pass the address of the instruction about

to be executed. The address of the instruction can be requested from Pin using IARG_INST_PTR.

Step 2: Replace docount with printip, which prints the instruction address. Note that the

analysis function is modified to take a proper argument (VOID *).

Step 3: Add file I/O to prevent writing the output to screen.

#include <stdio.h>

#include "pin.H"

FILE * trace;

// This function is called before every instruction is executed

VOID printip(VOID *ip) { fprintf(trace, "%p\n", ip); }

// Pin calls this function every time a new instruction is encountered

VOID Instruction(INS ins, VOID *v)

{

 // Insert a call to printip before every instruction, and pass it the IP

 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)printip, IARG_INST_PTR,

! ! ! ! ! ! ! ! ! ! ! IARG_END);

}

// This function is called when the application exits

VOID Fini(INT32 code, VOID *v)

{

 fclose(trace);

}

// argc, argv are the entire command line, including pin -t <toolname> -- ...

int main(int argc, char * argv[])

{

 trace = fopen("itrace.out", "w");

 // Initialize pin

 PIN_Init(argc, argv);

 // Register Instruction to be called to instrument instructions

 INS_AddInstrumentFunction(Instruction, 0);

 // Register Fini to be called when the application exits

 PIN_AddFiniFunction(Fini, 0);

 // Start the program, never returns

 PIN_StartProgram();

 return 0;

}

ASPLOS 2008 Pin Tutorial

Hands-on Tutorial Worksheet 7

Generic and Portable Inspection API

The previous example instruments all instructions. Sometimes a tool may only want to

instrument a class of instructions, like memory operations or branch instructions. A tool can do

this by using the Pin API that includes functions that classify and examine instructions.

In this example, we show how to do more selective instrumentation by examining the

instructions. This tool generates a trace of all memory addresses referenced by a program. This

is useful for debugging and for simulating a data cache in a processor.

We only instrument instructions that read or write memory. In addition, we also make minor

modifications to make the Pintool portable across architectures.

Expected output of the Pintool:

$../Bin/pin -t pintool.so -- /bin/ls

Makefile atrace.o imageload.o inscount0.o itrace.out

Makefile.example atrace.out imageload.out itrace proccount

atrace imageload inscount0 itrace.o proccount.o

$ head pinatrace.out

0x40001ee0: R 0xbfffe798

0x40001efd: W 0xbfffe7d4

0x40001f09: W 0xbfffe7d8

0x40001f20: W 0xbfffe864

0x40001f20: W 0xbfffe868

0x40001f20: W 0xbfffe86c

0x40001f20: W 0xbfffe870

0x40001f20: W 0xbfffe874

0x40001f20: W 0xbfffe878

0x40001f20: W 0xbfffe87c

$

ASPLOS 2008 Pin Tutorial

Hands-on Tutorial Worksheet 8

Follow the below steps to modify pintool.cpp to perform memory tracing:

Step 1: Alter your instrumentation routine to inspect only those instructions affecting memory

by querying whether an instruction reads or writes memory by using INS_IsMemoryRead and

INS_IsMemoryWrite API calls.

Step 2: Add the required analysis function calls (RecordMemRead and RecordMemWrite).

Step 3: Modify your instrumentation calls to make the Pintool portable across platforms. Use

INS_InsertPredicatedCall instead of INS_InsertCall to avoid generating references to

instructions that are predicated and the predicate is false (predication is only relevant for IA-64

ISA).

Step 4: Extend the instrumentation arguments (IARG’s) by adding IARG_MEMORYREAD_EA and

IARG_MEMORYWRITE_EA corresponding to the arguments of the analysis function calls.

Step 5: Change the name of the output file to “pinatrace.out”.

#include <stdio.h>

#include "pin.H"

FILE * trace;

// Print a memory read record

VOID RecordMemRead(VOID * ip, VOID * addr)

{

 fprintf(trace,"%p: R %p\n", ip, addr);

}

// Print a memory write record

VOID RecordMemWrite(VOID * ip, VOID * addr)

{

 fprintf(trace,"%p: W %p\n", ip, addr);

}

VOID Instruction(INS ins, VOID *v)

{

 // instruments loads using a predicated call, i.e.

 // the call happens iff the load will be actually executed

 // (does not matter for ia32 but arm & ipf have predicated instructions)

 if (INS_IsMemoryRead(ins))

 {

 INS_InsertPredicatedCall(

 ins, IPOINT_BEFORE, (AFUNPTR)RecordMemRead,

 IARG_INST_PTR,

 IARG_MEMORYREAD_EA,

 IARG_END);

 }

ASPLOS 2008 Pin Tutorial

Hands-on Tutorial Worksheet 9

 // instruments stores using a predicated call, i.e.

 // the call happens iff the store will be actually executed

 if (INS_IsMemoryWrite(ins))

 {

 INS_InsertPredicatedCall(

 ins, IPOINT_BEFORE, (AFUNPTR)RecordMemWrite,

 IARG_INST_PTR,

 IARG_MEMORYWRITE_EA,

 IARG_END);

 }

}

// This function is called when the application exits

VOID Fini(INT32 code, VOID *v)

{

 fclose(trace);

}

// argc, argv are the entire command line, including pin -t <toolname> -- ...

int main(int argc, char * argv[])

{

 trace = fopen("pinatrace.out", "w");

 // Initialize pin

 PIN_Init(argc, argv);

 // Register Instruction to be called to instrument instructions

 INS_AddInstrumentFunction(Instruction, 0);

 // Register Fini to be called when the application exits

 PIN_AddFiniFunction(Fini, 0);

 // Start the program, never returns

 PIN_StartProgram();

 return 0;

}

ASPLOS 2008 Pin Tutorial

Hands-on Tutorial Worksheet 10

Debugging a Pintool

There are 3 different programs residing in the address space. The application, the Pin

instrumentation engine, and your Pintool. This section describes how to use gdb to find bugs in

a Pintool. You cannot run Pin directly from gdb since Pin uses the debugging API to start the

application. Instead, you must invoke Pin from the command line with the -pause_tool switch,

and use gdb to attach to the Pin process from another window. The -pause_tool switch makes

Pin print out the process identifier (pid) and pause for n seconds.

If your tool is called pintool.so and the application is /bin/ls, you can use gdb as follows:

Start gdb with your tool, but do not use the run command:

$ gdb pintool.so

GNU gdb 5.2.1

Copyright 2002 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "i686-pc-linux-gnu"...

(gdb)

In another window, start your application with the -pause_tool switch:

$../Bin/pin -pause_tool 30 -t pintool.so -- /bin/ls

Pausing to attach to pid 28769

Then go back to gdb and attach to the process:

(gdb) attach 28769

Attaching to program: .../tutorial/pintool.so, process 28769

0x011ef361 in ?? ()

(gdb)

Now, instead of using the gdb run command, you use the cont command to continue execution.

You can also set breakpoints as normal:

(gdb) break main

Breakpoint 1 at 0x5048d30: file .../tutorial/pintool.so, line 232.

(gdb) cont

Continuing.

Breakpoint 1, main (argc=6, argv=0x4fef534)

 at .../tutorial/pintool.so:32

(gdb)

ASPLOS 2008 Pin Tutorial

Hands-on Tutorial Worksheet 11

Detecting the Loading and Unloading of Images

(Image Instrumentation)

It is also possible to use Pin to examine binaries without instrumenting them. This is useful when

you need to know static properties of an executable. For instance, compiler engineers may want

to study the ratio of static code size to the dynamic footprint of an application. Both of these

tasks can be achieved using Pin’s rich (yet simple) API.

The Pintool on the next page prints a message to a trace file every time and image is loaded or

unloaded as show here:

$../Bin/pin -t ./imageload.so -- /bin/ls

Makefile atrace.o imageload.o inscount0.o proccount

Makefile.example atrace.out imageload.out itrace proccount.o

atrace imageload inscount0 itrace.o trace.out

$ cat imageload.out

Loading /bin/ls

Loading /lib/ld-linux.so.2

Loading /lib/libtermcap.so.2

...

Loading /lib/i686/libc.so.6

Unloading /bin/ls

Unloading /lib/ld-linux.so.2

Unloading /lib/libtermcap.so.2

Unloading /lib/i686/libc.so.6

...

$

ASPLOS 2008 Pin Tutorial

Hands-on Tutorial Worksheet 12

#include <stdio.h>

#include "pin.H"

FILE * trace;

// Pin calls this function every time a new img is loaded

// It can instrument the image, but this example does not

// Note that imgs (including shared libraries) are loaded lazily

VOID ImageLoad(IMG img, VOID *v)

{

 fprintf(trace, "Loading %s\n", IMG_Name(img).c_str());

}

// Pin calls this function every time a new img is unloaded

// You can't instrument an image that is about to be unloaded

VOID ImageUnload(IMG img, VOID *v)

{

 fprintf(trace, "Unloading %s\n", IMG_Name(img).c_str());

}

// This function is called when the application exits

// It prints the name and count for each procedure

VOID Fini(INT32 code, VOID *v)

{

 fclose(trace);

}

// argc, argv are the entire command line, including pin -t <toolname> -- ...

int main(int argc, char * argv[])

{

 trace = fopen("imageload.out", "w");

 // Initialize symbol processing

 PIN_InitSymbols();

 // Initialize pin

 PIN_Init(argc, argv);

 // Register ImageLoad to be called when an image is loaded

 IMG_AddInstrumentFunction(ImageLoad, 0);

 // Register ImageUnload to be called when an image is unloaded

 IMG_AddUnloadFunction(ImageUnload, 0);

 // Register Fini to be called when the application exits

 PIN_AddFiniFunction(Fini, 0);

 // Start the program, never returns

 PIN_StartProgram();

 return 0;

}

ASPLOS 2008 Pin Tutorial

Hands-on Tutorial Worksheet 13

Examining Routines in an Image

It is possible to get insight into the properties of the image loaded into memory by parsing the

sections (.data, .rodata etc.) encoded in the binary, as well as the routines (i.e. functions)

contained within the .text section of the executable.

In the following example, we will work with on the imageload.so Pintool to make it print the

number of instructions contained in every function. The output expected upon running the tool

after modifications is show below:

$../Bin/pin -t ./imageload.so -- /bin/ls

Makefile atrace.o imageload.o inscount0.o proccount

Makefile.example atrace.out imageload.out itrace proccount.o

atrace imageload inscount0 itrace.o trace.out

$ cat imageload.out

_init has 8 insts

.plt has 286 insts

.text has 10166 insts

close_stdout has 14132 insts

rpl_free has 14901 insts

_fini has 12 insts

.plt has 19 insts

_dl_sysinfo_int80 has 33 insts

relocate_doit has 49 insts

map_doit has 71 insts

version_check_doit has 102 insts

_dl_initial_error_catch_tsd has 111 insts

rtld_lock_default_lock_recursive has 119 insts

rtld_lock_default_unlock_recursive has 127 insts

$

ASPLOS 2008 Pin Tutorial

Hands-on Tutorial Worksheet 14

Follow the below steps to print the number of instructions in every routine:

Step 1: Iterate over all sections of the executable using the SEC_* API (as shown below).

Step 2: Iterate over all the routines in a section using the shown RTN_* API.

Step 3: Add a counter to keep track of the number of instructions in a routine.

Step 4: Request Pin to make all instruction contained within a RTN accessible via RTN_Open.

Step 5: Increment the counter while iterating over every instruction in the routine.

Step 6: Release RTN resources to conserve memory, as RTN processing is expensive.

Step 7: Write the collected output to a file.

#include <stdio.h>

#include "pin.H"

FILE * trace;

// Pin calls this function every time a new img is loaded

// It can instrument the image, but this example merely

// counts the number of static instructions in the image

VOID ImageLoad(IMG img, VOID *v)

{

 for (SEC sec = IMG_SecHead(img); SEC_Valid(sec); sec = SEC_Next(sec))

 {

 for (RTN rtn = SEC_RtnHead(sec); RTN_Valid(rtn); rtn = RTN_Next(rtn))

 {

 ! UINT32 count = 0;

 // Prepare processing of RTN. RTN does not broken up into BBLs,

 // it is merely a sequence of INSs

 RTN_Open(rtn);

 for (INS ins = RTN_InsHead(rtn); INS_Valid(ins);

! ! ! ! ! ! ! ! ! ins = INS_Next(ins))

 {

 count++;

 }

 // to preserve space, release data associated with the RTN

 RTN_Close(rtn);

! ! fprintf(trace, “%s has %d insts\n",

! ! ! ! ! ! ! RTN_Name(rtn).c_str(), count);

 }

 }

}

ASPLOS 2008 Pin Tutorial

Hands-on Tutorial Worksheet 15

// Pin calls this function every time a new img is unloaded

// You can't instrument an image that is about to be unloaded

VOID ImageUnload(IMG img, VOID *v)

{

 fprintf(trace, "Unloading %s\n", IMG_Name(img).c_str());

}

// This function is called when the application exits

// It prints the name and count for each procedure

VOID Fini(INT32 code, VOID *v)

{

 fclose(trace);

}

// argc, argv are the entire command line, including pin -t <toolname> -- ...

int main(int argc, char * argv[])

{

 trace = fopen("imageload.out", "w");

 // Initialize symbol processing

 PIN_InitSymbols();

 // Initialize pin

 PIN_Init(argc, argv);

 // Register ImageLoad to be called when an image is loaded

 IMG_AddInstrumentFunction(ImageLoad, 0);

 // Register ImageUnload to be called when an image is unloaded

 IMG_AddUnloadFunction(ImageUnload, 0);

 // Register Fini to be called when the application exits

 PIN_AddFiniFunction(Fini, 0);

 // Start the program, never returns

 PIN_StartProgram();

 return 0;

}

ASPLOS 2008 Pin Tutorial

Hands-on Tutorial Worksheet 16

Replacing a Routine in Probe Mode

Probe mode is a method of using Pin to insert probes at the start of specified routines. In probe

mode, the application and the replacement routine are run natively. This improves performance,

but it puts more responsibility on the tool writer. Probes can only be placed on RTN boundaries.

A probe is a jump instruction that is placed at the start of the specified routine. The probe

redirects the flow of control to the replacement function. Before the probe is inserted, the first

few instructions of the specified routine are relocated. It is not uncommon for the replacement

function to call the replaced routine. Pin provides the relocated address to facilitate this.

In the following Pintool, the tool replaces an original library function (malloc) with a custom

function defined in the Pintool (NewMalloc) using the Probe Mode. The custom function is called

instead of the program’s original function, and it is useful for very fast function-level profiling

(e.g. tracing thread synchronization primitives), and the original function is invoked thereafter

using the function pointer handed over upon replacing the application’s original function.

NOTE: The command line requires the “-probe” mode argument.

$../Bin/pin -probe -t ./newmalloc.so -- /bin/ls

Replacing malloc in /lib/ld-linux.so.2

Org. entry to replaced function has been moved to 0xb6826158

NewMalloc (b6826158, 589)

NewMalloc (b6826158, 87)

NewMalloc (b6826158, 12)

NewMalloc (b6826158, 960)

...

$

ASPLOS 2008 Pin Tutorial

Hands-on Tutorial Worksheet 17

#include "pin.H"

#include <iostream>

using namespace std;

typedef VOID * (*FP_MALLOC)(size_t);

// This is the replacement routine.

VOID * NewMalloc(FP_MALLOC orgFuncptr, UINT32 arg0)

{

 // Normally one would do something more interesting with this data.

 cout << "NewMalloc ("

 << hex << ADDRINT (orgFuncptr) << ", "

 << dec << arg0 << ")"

 << endl << flush;

 // Call the relocated entry point of the original (replaced) routine.

 VOID * v = orgFuncptr(arg0);

 return v;

}

// Pin calls this function every time a new img is loaded.

// It is best to do probe replacement when the image is loaded,

// because only one thread knows about the image at this time.

VOID ImageLoad(IMG img, VOID *v)

{

 // See if malloc() is present in the image. If so, replace it.

 RTN rtn = RTN_FindByName(img, "malloc");

 if (RTN_Valid(rtn))

 {

 cout << "Replacing malloc in " << IMG_Name(img) << endl;

 // Define a function prototype that describes the application routine

 // that will be replaced.

 PROTO proto_malloc = PROTO_Allocate(PIN_PARG(void *),

! ! ! ! ! ! ! ! CALLINGSTD_DEFAULT,

 ! "malloc",

! ! ! ! ! ! ! ! PIN_PARG(int),

! ! ! ! ! ! ! ! PIN_PARG_END());

 // Replace the application routine with the replacement function.

 // Additional arguments have been added to the replacement routine.

 // The return value and the argument passed into the replacement

 // function with IARG_ORIG_FUNCPTR are the same.

 AFUNPTR origptr = RTN_ReplaceSignatureProbed(rtn, AFUNPTR(NewMalloc),

 !IARG_PROTOTYPE, proto_malloc,

 IARG_ORIG_FUNCPTR,

 IARG_FUNCARG_ENTRYPOINT_VALUE, 0,

 IARG_END);

 cout << "Org. entry to replaced function has been moved to 0x";

 cout << hex << (ADDRINT) origptr << dec << endl;

ASPLOS 2008 Pin Tutorial

Hands-on Tutorial Worksheet 18

! // Free the function prototype.

 PROTO_Free(proto_malloc);

 }

}

// Initialize and start Pin in Probe mode. "-probe" must be used on

// the command line.

int main(INT32 argc, CHAR *argv[])

{

 // Initialize symbol processing

 PIN_InitSymbols();

 // Initialize pin

 PIN_Init(argc, argv);

 // Register ImageLoad to be called when an image is loaded

 IMG_AddInstrumentFunction(ImageLoad, 0);

 // Start the program in probe mode, never returns

 PIN_StartProgramProbed();

 return 0;

}

ASPLOS 2008 Pin Tutorial

Hands-on Tutorial Worksheet 19

Extending Function Signatures

The “NewMalloc” function call does not need to have the same function signature as the

original function call. Let us extend the prototype of the function dynamically! This is extremely

useful for passing various Pin IARG’s, as well as your own custom arguments (such as a specific

memory pool from which to allocate based on the call-site).

In the following examples we will trace the callers of the application’s malloc function by

requesting Pin for the call-site return address and use that address to lookup the name of the

caller function. The expected output of the tool is show below:

$../Bin/pin -probe -t ./newmalloc.so -- /bin/ls

Replacing malloc in /lib/ld-linux.so.2

Org. entry to replaced function has been moved to 0xb6826158

NewMalloc (b6826158, 589, calloc)

NewMalloc (b6826158, 87, _dl_important_hwcaps)

NewMalloc (b6826158, 12, _dl_init_paths)

NewMalloc (b6826158, 960, _dl_init_paths)

NewMalloc (b6826158, 8, _dl_init_paths)

NewMalloc (b6826158, 64, fillin_rpath)

NewMalloc (b6826158, 20, _dl_map_object)

...

$

ASPLOS 2008 Pin Tutorial

Hands-on Tutorial Worksheet 20

Follow the below instructions to identify the arguments of the malloc function, as well as print

the name of the function calling malloc:

Step 1: Extend the IARG of RTN_ReplaceSignatureProbed by asking Pin to pass the return

address of the caller function. This is achieved using IARG_RETURN_IP.

Step 2: Extend the signature of our NewMalloc function to accept the return address by adding

“ADDRINT returnIp” to the function signature.

Step 3: Print the name of the caller by looking up the caller’s function name using

RTN_FindNameByAddress with returnIp as its argument.

#include "pin.H"

#include <iostream>

using namespace std;

typedef VOID * (*FP_MALLOC)(size_t);

// This is the replacement routine.

VOID * NewMalloc(FP_MALLOC orgFuncptr, UINT32 arg0, ADDRINT returnIp)

{

 // Normally one would do something more interesting with this data.

 cout << "NewMalloc ("

 << hex << ADDRINT (orgFuncptr) << ", "

 << dec << arg0 << ", "

! << RTN_FindNameByAddress(returnIp) << “)”

 << endl << flush;

 // Call the relocated entry point of the original (replaced) routine.

 VOID * v = orgFuncptr(arg0);

 return v;

}

// Pin calls this function every time a new img is loaded.

// It is best to do probe replacement when the image is loaded,

// because only one thread knows about the image at this time.

VOID ImageLoad(IMG img, VOID *v)

{

 // See if malloc() is present in the image. If so, replace it.

 RTN rtn = RTN_FindByName(img, "malloc");

 if (RTN_Valid(rtn))

 {

 cout << "Replacing malloc in " << IMG_Name(img) << endl;

 // Define a function prototype that describes the application routine

 // that will be replaced.

 PROTO proto_malloc = PROTO_Allocate(PIN_PARG(void *),

! ! ! ! ! ! ! ! CALLINGSTD_DEFAULT,

 ! "malloc",

ASPLOS 2008 Pin Tutorial

Hands-on Tutorial Worksheet 21

! ! ! ! ! ! ! ! PIN_PARG(int),

 ! ! ! ! ! ! ! ! PIN_PARG_END());

 // Replace the application routine with the replacement function.

 // Additional arguments have been added to the replacement routine.

 // The return value and the argument passed into the replacement

 // function with IARG_ORIG_FUNCPTR are the same.

 AFUNPTR origptr = RTN_ReplaceSignatureProbed(rtn, AFUNPTR(NewMalloc),

 !IARG_PROTOTYPE, proto_malloc,

 IARG_ORIG_FUNCPTR,

 IARG_FUNCARG_ENTRYPOINT_VALUE, 0,

! ! ! ! ! IARG_RETURN_IP,

 IARG_END);

 cout << "Org. entry to replaced function has been moved to 0x";

 cout << hex << (ADDRINT) origptr << dec << endl;

! // Free the function prototype.

 PROTO_Free(proto_malloc);

 }

}

// Initialize and start Pin in Probe mode. "-probe" must be used on

// the command line.

int main(INT32 argc, CHAR *argv[])

{

 // Initialize symbol processing

 PIN_InitSymbols();

 // Initialize pin

 PIN_Init(argc, argv);

 // Register ImageLoad to be called when an image is loaded

 IMG_AddInstrumentFunction(ImageLoad, 0);

 // Start the program in probe mode, never returns

 PIN_StartProgramProbed();

 return 0;

}

ASPLOS 2008 Pin Tutorial

Hands-on Tutorial Worksheet 22

Build Your Own Pin Tool -- strace Using Pin

strace is a tool for tracing system calls and signals. It intercepts and records the system

calls made by a running process, and can print a record of each system call, its

arguments, and its return value. strace is extremely useful as a diagnostic, instructional,

and debugging tool. System administrators, diagnosticians and trouble-shooters will find

it invaluable for solving problems with programs for which the source is not readily

available since they do not need to be recompiled in order to trace them. Students,

hackers and the overly-curious will find that a great deal can be learned about a system

and its system calls by tracing even ordinary programs. And programmers will find that

since system calls and signals are events that happen at the user/kernel interface, a

close examination of this boundary is very useful for bug isolation, sanity checking and

attempting to capture race conditions.

Running strace generates the following output:

$ strace /bin/echo

execve("/bin/echo", ["echo"], [/* 31 vars */]) = 0
uname({sys="Linux", node="ubuntu-desktop", ...}) = 0
brk(0) = 0x804d000
…
open("/etc/ld.so.cache", O_RDONLY) = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=42307, ...}) = 0
old_mmap(NULL, 42307, PROT_READ, MAP_PRIVATE, 3, 0) = 0xb7efa000
…

$

The goal is to modify one of your prior tools to mimic the strace program functionality of

tracing system calls. The following steps are a rough guide through the process:

Step 1: strace is concerned only with system calls, so your instrumentation function must

intercept only system calls. Wrap your instruction instrumentation call (i.e. INS_InsertCall)

around with the INS_IsSyscall inspection check, which returns true only for system call

instructions:

if (INS_IsSyscall(ins))

{
! INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) print, IARG_END);

}

Step 2: Tracing system calls is insightful only if we know the system call being executed by the

program. This information can be requested from Pin using the IARG_SYSCALL_NUMBER

instrumentation argument. IARG_SYSCALL_NUMBER passes the number of a system call to the

analysis function. Modify your instrumentation, as well as the analysis function to intercept and

ASPLOS 2008 Pin Tutorial

Hands-on Tutorial Worksheet 23

print the system call number as follows:

VOID print(INT32 num)

{

! printf("%d \n", num);

}

VOID Instruction(INS ins, VOID *v)

{

! if (INS_IsSyscall(ins))

 !{

 ! INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) print,

 ! ! ! IARG_SYSCALL_NUMBER, IARG_END);

 !}

}

Building and running the Pin Tool should now produce an output that resembles the following:

 122

 45

 90

 33

 90

 33

 5

 …

Step 3: Next, we are interested in dissecting the arguments passed by the application to the

system call interface. Using IARG_SYSCALL_VALUE, n a Pin Tool can intercept the nth system

call argument as shown below:

VOID print(INT32 num, VOID * arg0,

 VOID * arg1, VOID * arg2, VOID * arg3, VOID * arg4, VOID * arg5)

{

 ! printf("%d(%p, %p, %p, %p, %p, %p) \n",

 !! ! ! num, arg0, arg1, arg2, arg3, arg4, arg5);

}

VOID Instruction(INS ins, VOID *v)

{

 ! if (INS_IsSyscall(ins))

 !{

 ! INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) print,

 ! IARG_SYSCALL_NUMBER,

 ! IARG_SYSARG_VALUE, 0,

 ! IARG_SYSARG_VALUE, 1,

 ! IARG_SYSARG_VALUE, 2,

 ! IARG_SYSARG_VALUE, 3,

 ! IARG_SYSARG_VALUE, 4,

 ! IARG_SYSARG_VALUE, 5,

 ! IARG_END);

ASPLOS 2008 Pin Tutorial

Hands-on Tutorial Worksheet 24

 ! }

}

Your Pin Tool's output should now start taking the form of the output generated by strace:

 122(0xbf89ffbc, (nil), 0xb7fa3778, (nil), 0xb7f8e000, 0xbf8a0198)

 45((nil), 0xb7fa3778, 0xffffe400, 0x2060f, 0xbf8a0045, 0xbf89ff84)

 90(0xbf89fd3c, 0x24d, 0xb7fa3778, 0xb7fa3f08, 0x1000, 0xbf89fd60)

 33(0xb7fa1e7b, (nil), 0xb7fa3778, 0xb6784020, 0x804c280, 0xbf89fd84)

 90(0xbf89fd4c, 0x1838, 0xb7fa3778, 0xb6784320, 0x2000, 0xbf89fd70)

 33(0xb7f9f54d, 0x4, 0xb7fa3778, 0xffffffe0, 0xb7f9f54d, 0xbf89ff84)

 5(0xb7fa1e8e, (nil), (nil), 0xb67841dc, 0xb7fa3e70, 0xbf89f8c8)

 …

Step 4: There is still one remaining step to complete the Pin-based strace tool – we must find

the return value of a system call. The return value of a system call can be requested from Pin

using IARG_SYSRET_VALUE. Since the return value is only available after a system call

instruction finishes execution, a new instrumentation call is required that invokes a different

analysis routine to print the return value. Notification of system call completion can be got

using IPOINT_AFTER instrumentation. To achieve this required functionality, add the following

code:

VOID printafter(VOID * ret)

{

! printf("returns: %p \n", ret);

}

VOID Instruction(INS ins, VOID *v)

{

 ! if (INS_IsSyscall(ins))

 !{

 ! …

 ! INS_InsertCall(ins, IPOINT_AFTER, AFUNPTR(printafter),

 ! ! ! IARG_SYSRET_VALUE,

 !! ! IARG_END);

 ! }

}

While program output varies from one system to another, the general output form should

resemble the following:

 33(0xb7fa654d, 0x4, 0xb7faa778, 0xffffffe0, 0xb7fa654d, 0xbffa8e14)

 returns: 0xffffffff

 5(0xb7fa8e8e, (nil), (nil), 0xb678c1dc, 0xb7faae70, 0xbffa8758)

 returns: 0x3

 ...

You have now successfully built your own strace Pin Tool (in < 50 lines)!

ASPLOS 2008 Pin Tutorial

Hands-on Tutorial Worksheet 25

Conclusion

In summarizing today’s hands-on experience, we have improved an instruction counting tool to

perform instruction and memory address tracing. We have also covered how to attach a

debugger to help debug a Pintool. Lastly, we took a peek into how Pin can be used to alter

application code dynamically. Overall, Pin exposes a transparent API that is easy to use, flexible,

and (mostly) independent of the underlying platform, thereby allow users to focus on the task

at hand rather than expend energy dealing with ISA and ABI idiosyncrasies.

Many of the examples covered in this hands-on session are directly derived from the examples

provided in the Pin kit. The best starting point for writing your own tool is to modify an existing

Pintool slightly to suit your needs.

Congratulations -- you are now a Pinhead!

ASPLOS 2008 Pin Tutorial

Hands-on Tutorial Worksheet 26

