
1

Pin: Intel’s Dynamic Binary
Instrumentation Engine

Pin Tutorial

Intel Corporation

Written By:
Tevi Devor

Presented By:
Sion Berkowits

CGO 2013

2

Which one of these people is the Pin Performance Guru?

3

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,

ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER

AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR

WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY

PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate

performance of Intel products as measured by those tests. Any difference in system hardware or software design or

configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance

of systems or components they are considering purchasing. For more information on performance tests and on the

performance of Intel products, reference www.intel.com/software/products.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2013. Intel Corporation.

4

Intel compilers, associated libraries and associated development tools may include or utilize options
that optimize for instruction sets that are available in both Intel and non-Intel microprocessors (for
example SIMD instruction sets), but do not optimize equally for non-Intel microprocessors. In addition,
certain compiler options for Intel compilers, including some that are not specific to Intel micro-
architecture, are reserved for Intel microprocessors. For a detailed description of Intel compiler
options, including the instruction sets and specific microprocessors they implicate, please refer to the
“Intel Compiler User and Reference Guides” under “Compiler Options." Many library routines that are
part of Intel compiler products are more highly optimized for Intel microprocessors than for other
microprocessors. While the compilers and libraries in Intel compiler products offer optimizations for
both Intel and Intel-compatible microprocessors, depending on the options you select, your code and
other factors, you likely will get extra performance on Intel microprocessors.

Intel compilers, associated libraries and associated development tools may or may not optimize to the
same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include Intel® Streaming SIMD Extensions 2 (Intel® SSE2),
Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and Supplemental Streaming SIMD Extensions 3
(Intel SSSE3) instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best
performance on Intel and non-Intel microprocessors, Intel recommends that you evaluate other
compilers and libraries to determine which best meet your requirements. We hope to win your business
by striving to offer the best performance of any compiler or library; please let us know if you find we do
not.

Notice revision #20110307

Optimization Notice

5

Agenda

• Part 1: Introduction to Pin

• Part 2: Topics in Pin API

• Part 3: Performance – Optimizing your Pin tool

• Part 4: Advanced Pin

6

Part 1
Introduction to Pin

7

Instrumentation in a nutshell

• A technique that inserts code into a program to
collect run-time information

movzx ecx, [rax+0x2]

call 0x77ef7870

cmp rax, rdx

jz 0x77f1eac9

..some code

..some code

movzx ecx, [rax+0x2]

..some code

..some code

call 0x77ef7870

..some code

..some code

cmp rax, rdx

..some code

..some code

jz 0x77f1eac9

8

Instrumentation types

• Different usages

– Program analysis : performance profiling, error detection,
capture & replay

– Architectural study : processor and cache simulation, trace
collection

– Binary translation : Modify program behavior, emulate
unsupported instructions

• Different types

– Source code instrumentation

– Static binary instrumentation

– Dynamic binary instrumentation

9

Dynamic binary instrumentation

• Instrument binary code right before it runs

– a.k.a. Just in time, or JIT

• Benefits

– No need to recompile or re-link

– Discover code at runtime

– Handle dynamically generated code

– Attach to running processes

10

Pin

• Dynamic binary instrumentation framework

• Developed at Intel

• What does “Pin” stand for?

– Pin Is Not an acronym

– Pin is based on the IPF post link optimizer iSpike

– Pin is a small Spike

– Spike is EOL
http://www.cgo.org/cgo2004/papers/01_82_luk_ck.pdf

11

Advantages of Pin Instrumentation

• Programmable Instrumentation:
– Write your own instrumentation tools, called PinTools

– PinTools can be written in C, C++, assembly
– APIs are designed to maximize ease of use

– abstract away the underlying instruction set idiosyncrasies

• Multiplatform:

– OS’s: Windows, Linux, OSX, Android

– Architectures: IA-32, Intel64

• Robust:
– Instruments real-life applications: Database, web browsers, …

– Instruments multithreaded applications

– Supports signals and exceptions, self modifying code…

• Efficient:
– Applies compiler optimizations on instrumentation code

Pin can be used to instrument all the user level code
in an application

12

PinTool Capabilities
• Replace application functions with your own

– Call the original function from within your function

• Fully examine any application instruction, insert a call to your
instrumenting function to be executed whenever that
instruction executes
– Pass parameters to your instrumenting function from a large set of

supported parameters
– Register values (including IP), also by reference (for modification)
– Memory addresses read/written by the instruction
– Full registers context
– …

• Track function calls, including syscalls
– Examine/change arguments

• Track application threads
• Intercept signals
• Instrument a process tree
• Many other capabilities…

13

Usage of Pin at Intel

• Profiling and analysis products
– Intel® Parallel Studio XE

– Intel® VTune™ Amplifier XE (performance analysis)
– Locks and waits analysis

– Concurrency analysis

– Intel® Inspector XE (correctness analysis)
– Threading error detection (data race and deadlock)

– Memory error detection

• Architectural research and enabling
– Emulating new instructions (Intel SDE)

– Trace generation

– Branch prediction and cache modeling

• Others
– PinPlay, PinPoints (go to HPCS tutorial later today)

– http://snipersim.org/w/Tutorial:HPCA_2013_PinPoints

http://snipersim.org/w/Tutorial:HPCA_2013_PinPoints

14

Pin Usage Outside Intel

• Popular and well supported

– 30,000+ downloads, 700+ citations

• Free Download

– www.pintool.org

– Includes: Detailed user manual, source code for 100s of
Pin tools

• Pin User Group (PinHeads)

– http://tech.groups.yahoo.com/group/pinheads/

– Pin users and Pin developers answer questions

http://www.pintool.org/
http://tech.groups.yahoo.com/group/pinheads/

15

Example Pin invocation

• Application:

gzip.exe input.txt

• PinTool: inscount.dll

– Count application instructions executed, print count at end

• Invocation:

> pin.exe –t inscount.dll -- gzip.exe input.txt

16

Application

Code and

Data

Application Process

System Call

Dispatcher

Event

Dispatcher

Thread

Dispatcher

PINVM.DLL

inscount.dll

PIN.LIB

Code

Cache

NTDLL.DLL

Windows kernel

Launcher

PIN.EXE

Launcher Process

Boot Routine +

Data:

firstAppIp,

“Inscount.dll”

pin.exe –t inscount.dll -- gzip.exe input.txt

First
app
IP

D
e
c
o
d
e
r

E
n
c
o
d
e
r

17

Application Process

Application

Code and

Data
System Call

Dispatcher

Event

Dispatcher

Thread

Dispatcher

PINVM.DLL

inscount.dll

PIN.LIB

Code

Cache

NTDLL.DLL

Windows kernel

Boot Routine +

Data:

firstAppIp,

“Inscount.dll”

First
app
IP

app Ip of
Trace’s
target

D
e
c
o
d
e
r

E
n
c
o
d
e
r

Launcher

PIN.EXE

Launcher Process
pin.exe –t inscount.dll -- gzip.exe input.txt

18

All code in this presentation is covered
by the following:
• /*BEGIN_LEGAL
• Intel Open Source License

• Copyright (c) 2002-2013 Intel Corporation. All rights reserved.
•
• Redistribution and use in source and binary forms, with or without
• modification, are permitted provided that the following conditions are
• met:

• Redistributions of source code must retain the above copyright notice,
• this list of conditions and the following disclaimer. Redistributions
• in binary form must reproduce the above copyright notice, this list of
• conditions and the following disclaimer in the documentation and/or
• other materials provided with the distribution. Neither the name of
• the Intel Corporation nor the names of its contributors may be used to
• endorse or promote products derived from this software without
• specific prior written permission.
•
• THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
• ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
• LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
• A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE INTEL OR
• ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
• SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
• LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
• DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
• THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
• (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
• OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
• END_LEGAL */

19

Jitting time routine: Pin CallBack

restore eflags

• mov 0x1, %edi

• jle <L1>

Instruction Counting Tool (inscount.dll)

inc icount

inc icount

inc icount

inc icount

• sub $0xff, %edx

• cmp %esi, %edx

save eflags

Execution time routine

#include "pin.h"

UINT64 icount = 0;

void docount() { icount++; }

void Instruction(INS ins, void *v)

{

INS_InsertCall(ins, IPOINT_BEFORE,

(AFUNPTR)docount, IARG_END);

}

void Fini(INT32 code, void *v)

{ std::cerr << "Count " << icount << endl; }

int main(int argc, char * argv[]) {

PIN_Init(argc, argv);

INS_AddInstrumentFunction(Instruction, 0);

PIN_AddFiniFunction(Fini, 0);

PIN_StartProgram(); // Never returns

return 0; }

20

Instrumentation vs. Analysis

•Instrumentation routines define where
instrumentation is inserted

–e.g., before instruction

C Occurs when an instruction is being jitted

•Analysis routines define what to do when
instrumentation is activated

–e.g., increment counter

C Occurs every time an instruction is

executed

21

Trace

Original

code

Trace

BBL#3

BBL#2’

BBL#1’
Early Exit via Stub

Trace Exit via Stub

Early Exit via Stub

BBL#2 BBL#4

BBL#1

BBL#3

BBL# 5 BBL# 6

BBL# 7

FT

FT

TK

TK

• Trace: A sequence of continuous instructions, with
one entry point

• BBL: has one entry point and ends at first control
transfer instruction

22

#include "pin.H"

UINT64 icount = 0;

void PIN_FAST_ANALYSIS_CALL docount(INT32 c) { icount += c; }

void Trace(TRACE trace, void *v){// Pin Callback
for(BBL bbl = TRACE_BblHead(trace);

BBL_Valid(bbl);
bbl = BBL_Next(bbl))
BBL_InsertCall(bbl, IPOINT_ANYWHERE,

(AFUNPTR)docount, IARG_FAST_ANALYSIS_CALL,
IARG_UINT32, BBL_NumIns(bbl),
IARG_END);

}

void Fini(INT32 code, void *v) {// Pin Callback
fprintf(stderr, "Count %lld\n", icount);

}

int main(int argc, char * argv[]) {
PIN_Init(argc, argv);
TRACE_AddInstrumentFunction(Trace, 0);
PIN_AddFiniFunction(Fini, 0);
PIN_StartProgram();
return 0;

}

ManualExamples/inscount2.cpp

23

0x001de0000 mov r14, 0xc5267d40 //inscount2.docount

0x001de000a add [r14], 0x2 //inscount2.docount

0x001de0015 0x77ec4600 cmp rax, rdx

0x001de0018 jz 0x1deffa0 L1 //patched in future

0x001de001e mov r14, 0xc5267d40 //inscount2.docount

0x001de0028 mov [r15+0x60], rax

0x001de002c lahf

0x001de002e seto al

0x001de0031 mov [r15+0xd8], ax

0x001de0039 mov rax, [r15+0x60]

0x001de003d add [r14], 0x2 //inscount2.docount

0x001de0048 0x77ec4609 movzx edi, [rax+0x2] //ecx alloced to edi

0x001de004c push 0x77ec4612 //push retaddr

0x001de0051 nop

0x001de0052 jmp 0x1deffd0 L2 //patched in future

L2:

0x001deffd0 mov [r15+0x40], rsp // save app rsp

0x001deffd4 mov rsp, [r15+0x2d0] // switch to pin stack

0x001deffdb call [0x2f000000]// call VmEnter

// data used by VmEnter – pointed to by return-address of call

0x001deffe8_svc(VMSVC_XFER)

0x001defff0_sct(0x00065fb60) // current register mapping

0x001defff8_iaddr(0x077ef7870) // app target IP of

// call at 0x77ec460d

L1:

0x001deffa0 mov [r15+0x40], rsp // save app rsp

0x001deffa4 mov rsp, [r15+0x2d0] // switch to pin stack

0x001deffab call [0x2f000000] // call VmEnter

// data used by VmEnter – pointed to by return-address of call

0x001deffb8_svc(VMSVC_XFER)

0x001deffc0_sct(0x00065f998) // current register mapping

0x001deffc8_iaddr(0x077f1eac9)// app target IP of jz at 0x77ec4603

APP IP

0x77ec4600 cmp rax, rdx

0x77ec4603 jz 0x77f1eac9

0x77ec4609 movzx ecx, [rax+0x2]

0x77ec460d call 0x77ef7870

save
status
flags

24

Multi-Threading

• Pin supports multi-threading

– Application threads execute jitted code including
instrumentation code (inlined and not inlined), without any
serialization introduced by Pin

– Instrumentation code can use Pin and/or OS synchronization
constructs to introduce serialization if needed.

– Pin provides APIs for thread local storage.

– Pin callbacks are serialized

– Jitting is serialized
– Only one application thread can be jitting code at any time

25

#include "pin.H"

INT32 numThreads = 0;

const INT32 MaxNumThreads = 10000;

struct THREAD_DATA

{

UINT64 _count;

UINT8 _pad[56]; /* guess why? */ }icount[MaxNumThreads];

// Analysis routine

VOID PIN_FAST_ANALYSIS_CALL docount(ADDRINT c, THREADID tid) { icount[tid]._count += c;}

// Pin Callback

VOID ThreadStart(THREADID threadid, CONTEXT *ctxt, INT32 flags, VOID *v){numThreads++;}

VOID Trace(TRACE trace, VOID *v) { // Jitting time routine: Pin Callback

for (BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl); bbl = BBL_Next(bbl))

BBL_InsertCall(bbl, IPOINT_ANYWHERE, (AFUNPTR)docount, IARG_FAST_ANALYSIS_CALL,

IARG_UINT32, BBL_NumIns(bbl), IARG_THREAD_ID, IARG_END); }

VOID Fini(INT32 code, VOID *v){// Pin Callback

for (INT32 t=0; t<numThreads; t++)

printf ("InsCount[of thread#%d]= %d\n",t,icount[t]._count); }

int main(int argc, char * argv[]) {

PIN_Init(argc, argv);

for (INT32 t=0; t<MaxNumThreads; t++) {icount[t]._count = 0;}

PIN_AddThreadStartFunction(ThreadStart, 0);

TRACE_AddInstrumentFunction(Trace, 0);

PIN_AddFiniFunction(Fini, 0);

PIN_StartProgram(); return 0; }

SimpleExamples/inscount2_mt.cpp

Why is there NO synchronization?

26

A couple more examples..

27

#include "pin.h“
#include <map>
std::map<ADDRINT, std::string> disAssemblyMap;

VOID ReadsMem (ADDRINT applicationIp, ADDRINT memoryAddressRead, UINT32 memoryReadSize) {

printf ("0x%x %s reads %d bytes of memory at 0x%x\n",

applicationIp, disAssemblyMap[applicationIp].c_str(),

memoryReadSize, memoryAddressRead);}

VOID Instruction(INS ins, void * v) {// Jitting time routine

if (INS_IsMemoryRead(ins)) {

disAssemblyMap[INS_Address(ins)] = INS_Disassemble(ins);

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) ReadsMem,

IARG_INST_PTR,// application IP

IARG_MEMORYREAD_EA,

IARG_MEMORYREAD_SIZE,

IARG_END);

}

}

int main(int argc, char * argv[]) {

PIN_Init(argc, argv);

INS_AddInstrumentFunction(Instruction, 0);

PIN_StartProgram();

}

Memory Read Logger Tool

28

SDE

•SDE: A fast functional simulator for
applications with new instructions
–New instructions have been defined

–Compiler generates code with new
instructions

–What can be used to run the apps with
the new instructions?
–Use PinTool that emulates new instructions.

– vmovdqu ymm?, mem256 vmovdqu mem256, ymm?
– 16 new 256 bit ymm registers

– Read/Write ymm register from/to memory.

29

#include "pin.H"

VOID EmVmovdquMem2Reg(unsigned int ymmDstRegNum, ADDRINT * ymmMemSrcPtr) {
PIN_SafeCopy(ymmRegs[ymmDstRegNum], ymmMemSrcPtr, 32); }

VOID EmVmovdquReg2Mem(int ymmSrcRegNum, ADDRINT * ymmMemDstPtr) {
PIN_SafeCopy(ymmMemDstPtr, ymmRegs[ymmRegNum], 32); }

VOID Instruction(INS ins, VOID *v) {
switch (INS_Opcode(ins)
{

:::::
case XED_ICLASS_VMOVDQU:
if (INS_IsMemoryRead(ins)) // vmovdqu ymm? <= mem256

INS_InsertCall(ins, IPOINT_BEFORE,
(AFUNPTR)EmVmovdquMem2Reg,
IARG_UINT32, REG(INS_OperandReg(ins, 0)) - REG_YMM0,
IARG_MEMORYREAD_EA,
IARG_END);

else if (INS_IsMemoryWrite(ins)) // vmovdqu mem256 <= ymm?
INS_InsertCall(ins, IPOINT_BEFORE,

(AFUNPTR)EmVmovdquReg2Mem,
IARG_UINT32, REG(INS_OperandReg(ins, 1)) - REG_YMM0,
IARG_MEMORYWRITE_EA,
IARG_END);

INS_DeleteIns(ins); //Processor does NOT execute this instruction
break;

} }

int main(int argc, CHAR *argv[]) {
PIN_Init(argc,argv));
INS_AddInstrumentFunction(Instruction, 0);
PIN_StartProgram(); }

sde_emul.dll Schema

30

Part 2
Topics in Pin API

Symbols

Probe-mode

The CONTEXT structure

Multi-threading

Instrumenting a process tree

31

Symbols

32

Symbols
• PIN_InitSymbols()

– Pin will use whatever symbol information is available

– Debug info in the app

– Pdb files

– Export Tables

– On Windows uses dbghelp

– See PIN_InitSymbolsAlt() for more control over which
symbols will be used

• Use symbols to instrument/wrap/replace specific
functions

• Access application debug information from a Pin
tool

– Use API function PIN_GetSourceLocation()

33

Instrument malloc and free

int main(int argc, char *argv[])

{

// Initialize pin symbol manager

PIN_InitSymbols();

// See also PIN_InitSymbolsAlt() for more control over which symbols are read

PIN_Init(argc,argv);

// Register the function ImageLoad to be called each time an image is loaded in the process

// This includes the process itself and all shared libraries it loads (implicitly or explicitly)

IMG_AddInstrumentFunction(ImageLoad, 0);

// Never returns

PIN_StartProgram();

}

34

Instrument malloc and free
VOID ImageLoad(IMG img, VOID *v) // Pin Callback.
{

// Instrument the malloc() and free() functions. Print the input argument
// of each malloc() or free(), and the return value of malloc().

RTN mallocRtn = RTN_FindByName(img, "_malloc"); // Find the malloc() function.
if (RTN_Valid(mallocRtn))
{

RTN_Open(mallocRtn);

// Instrument malloc() to print the input argument value and the return value.
RTN_InsertCall(mallocRtn, IPOINT_BEFORE, (AFUNPTR)MallocBefore,

IARG_FUNCARG_ENTRYPOINT_VALUE, 0,
IARG_END);

RTN_InsertCall(mallocRtn, IPOINT_AFTER, (AFUNPTR)MallocAfter,
IARG_FUNCRET_EXITPOINT_VALUE, IARG_END);

RTN_Close(mallocRtn);
}

RTN freeRtn = RTN_FindByName(img, "_free"); // Find the free() function.
if (RTN_Valid(freeRtn))
{

RTN_Open(freeRtn);
// Instrument free() to print the input argument value.
RTN_InsertCall(freeRtn, IPOINT_BEFORE, (AFUNPTR)FreeBefore,

IARG_FUNCARG_ENTRYPOINT_VALUE, 0,
IARG_END);

RTN_Close(freeRtn);
}

}

35

Alternative: Handling name-mangling
and multiple symbols at same address
VOID Image(IMG img, VOID *v)
{

// Walk through the symbols in the symbol table.
for (SYM sym = IMG_RegsymHead(img); SYM_Valid(sym); sym = SYM_Next(sym))
{

string undFuncName = PIN_UndecorateSymbolName(SYM_Name(sym), UNDECORATION_NAME_ONLY);

if (undFuncName == "malloc") // Find the malloc function.
{

RTN mallocRtn = RTN_FindByAddress(IMG_LowAddress(img) + SYM_Value(sym));

if (RTN_Valid(mallocRtn))
{

RTN_Open(mallocRtn);

// Instrument to print the input argument value and the return value.
RTN_InsertCall(mallocRtn, IPOINT_BEFORE, (AFUNPTR)MallocBefore,

IARG_FUNCARG_ENTRYPOINT_VALUE, 0,
IARG_END);

RTN_InsertCall(mallocRtn, IPOINT_AFTER, (AFUNPTR)MallocAfter,
IARG_FUNCRET_EXITPOINT_VALUE,
IARG_END);

RTN_Close(mallocRtn);
}

}
}

}

36

Accessing Application Debug Info from a
Pin Tool: Catch a Memory Overwrite

VOID Instruction(INS ins, VOID *v) // INS_AddInstrumentFunction(Instruction, 0);
{

UINT32 numMemOperands = INS_MemoryOperandCount(ins);

// Iterate over each memory operand of the instruction.
for (UINT32 memOp = 0; memOp < numMemOperands ; memOp++)
{

if (INS_MemoryOperandIsWritten(ins, memOp))
{ // Insert instrumentation code to catch a memory overwrite

INS_InsertIfCall (ins, IPOINT_BEFORE,
AFUNPTR(AnalyzeMemWrite),
IARG_FAST_ANALYSIS_CALL,
IARG_MEMORYOP_EA, memop,
IARG_MEMORYWRITE_SIZE,
IARG_END);

INS_InsertThenCall (ins, IPOINT_BEFORE,
AFUNPTR(MemoryOverWriteAt),
IARG_FAST_ANALYSIS_CALL,
IARG_INST_PTR,
IARG_MEMORYOP_EA, memop,
IARG_MEMORYWRITE_SIZE,
IARG_END);

}
}

}

37

Accessing Application Debug Info from a
Pin Tool: Catch a Memory Overwrite

KNOB<ADDRINT> KnobMemAddrBeingOverwritten(KNOB_MODE_WRITEONCE, "pintool",
"mem_overwrite_addr", "256", "overwritten memaddr");

static ADDRINT PIN_FAST_ANALYSIS_CALL
AnalyzeMemWrite (// Pin will inline this function, it is the IF part

ADDRINT memWriteAddr, UINT32 numBytesWritten)
{ // return 1 if this memory write overwrites the address specified by

// KnobMemAddrBeingOverwritten
return (memWriteAddr<= KnobMemAddrBeingOverwritten &&

(memWriteAddr + numBytesWritten) > KnobMemAddrBeingOverwritten);
}

static VOID PIN_FAST_ANALYSIS_CALL
MemoryOverWriteAt (// Pin will NOT inline this function, it is the THEN part

ADDRINT appIP, ADDRINT memWriteAddr, UINT32 numBytesWritten)
{

INT32 column, lineNum;
string fileName;

PIN_GetSourceLocation (appIP, &column, &line, &fileName);

printf ("overwrite of %p from instruction at %p originating from file %s line %d col %d\n",
KnobMemAddrBeingOverwritten, appIP, fileName.c_str(), lineNum, column);

printf (" writing %d bytes starting at %p\n", numBytesWritten, memWriteAddr);
}

38

Probe mode

39

Pin Probe-Mode

• Probe mode is a method of using Pin to instrument at the
function level only. Wrap, Replace, call Analysis function
before/after.

• Replacement or Wrapping function can call the replaced
(original) function.

• The application and the replacement routine are run natively
(not Jitted).
– Faster than Jit-mode
– Puts more responsibility on the tool writer.
– Probes can only be placed on RTN boundaries
– Must be inserted within the Image load callback.
– Pin will automatically remove the probes when an image is unloaded.

• Many of the PIN APIs that are available in JIT mode are not
available in Probe mode.

40

JIT Mode vs Probe Mode

• JIT Mode

–Pin creates a modified copy of the application on-
the-fly

–Original code never executes

More flexible, more common approach

• Probe Mode

–Pin modifies the original application instructions

– Inserts jumps to instrumentation code
(trampolines)

Lower overhead (less flexible) approach

41

A Sample Probe

• A probe is a jump instruction that overwrites
original instruction(s) in the application

– Instrumentation invoked with probes

– Pin copies/translates original bytes so probed
(replaced) functions can be called from the
replacement function

42

A Sample Probe

0x400113d4: push %ebp

0x400113d5: mov %esp,%ebp

0x400113d7: push %edi

0x400113d8: push %esi

0x400113d9: push %ebx

…

…

0x41481064: … // Tool code

…

…

0x414827fe: call 0x50000004 // Call orig func

…

0x50000004: push %ebp

0x50000005: mov %esp,%ebp

0x50000007: push %edi

0x50000008: push %esi

0x50000009: jmp 0x400113d9

Foo:

Copy of Foo entry:

Tool / wrapper:

jmp 0x41481064

43

PinProbes Instrumentation

• Advantages:

–Low overhead – few percent

–Less intrusive – execute original code

–Leverages Pin:

– API

– Instrumentation engine

• Disadvantages:

–More tool writer responsibility

–Routine-level granularity (RTN)

44

Using Probes to Replace/Wrap a
Function

• RTN_ReplaceSignatureProbed() redirects all calls
to application routine rtn to the specified

replacementFunction

– Can add IARG_* types to be passed to the replacement
routine, including pointer to original function and
IARG_CONTEXT.

– Replacement function can call original function.

• To use:

– Must use PIN_StartProgramProbed()

– Application prototype is required

45

#include "pin.H"
void * MallocWrapper(CONTEXT * ctxt, AFUNPTR pf_malloc, size_t size)
{ // Simulate out-of-memory every so often

void * res;
if (TimeForOutOfMem())

return (NULL);
PIN_CallApplicationFunction(ctxt, PIN_ThreadId(),

CALLINGSTD_DEFAULT, pf_malloc,
PIN_PARG(void *), &res, PIN_PARG(size_t), size);

return res;
}
VOID ImageLoad(IMG img, VOID *v) { // Pin callback. Registered by IMG_AddInstrumentFunction

if (strstr(IMG_Name(img).c_str(), "libc.so") ||
strstr(IMG_Name(img).c_str(), "MSVCR80") || strstr(IMG_Name(img).c_str(), "MSVCR90"))

{
RTN mallocRtn = RTN_FindByName(img, "malloc");

PROTO protoMalloc = PROTO_Allocate(PIN_PARG(void *), CALLINGSTD_DEFAULT,
"malloc", PIN_PARG(size_t), PIN_PARG_END());

RTN_ReplaceSignature(mallocRtn, AFUNPTR(MallocWrapper),
IARG_PROTOTYPE, protoMalloc,
IARG_CONST_CONTEXT,
IARG_ORIG_FUNCPTR,
IARG_FUNCARG_ENTRYPOINT_VALUE, 0,
IARG_END);

}
}
int main(int argc, CHAR *argv[]) {

PIN_InitSymbols();
PIN_Init(argc,argv));
IMG_AddInstrumentFunction(ImageLoad, 0);
PIN_StartProgram();

}

Malloc Wrapping – Jit Mode

46

#include "pin.H"
void * MallocWrapper(AFUNPTR pf_malloc, size_t size)
{ // Simulate out-of-memory every so often

void * res;
if (TimeForOutOfMem())

return (NULL);
res = pf_malloc(size);
return res;

}

VOID ImageLoad (IMG img, VOID *v) {
if (strstr(IMG_Name(img).c_str(), "libc.so") ||

strstr(IMG_Name(img).c_str(), "MSVCR80") || strstr(IMG_Name(img).c_str(), "MSVCR90"))
{

RTN mallocRtn = RTN_FindByName(img, "malloc");

if (RTN_Valid(mallocRtn) &&
RTN_IsSafeForProbedReplacement(mallocRtn))

{
PROTO proto_malloc = PROTO_Allocate(PIN_PARG(void *), CALLINGSTD_DEFAULT, "malloc",

PIN_PARG(size_t), PIN_PARG_END());

RTN_ReplaceSignatureProbed (mallocRtn,
AFUNPTR(MallocWrapper),
IARG_PROTOTYPE, proto_malloc,
IARG_ORIG_FUNCPTR,
IARG_FUNCARG_ENTRYPOINT_VALUE, 0,
IARG_END);

} }}

int main(int argc, CHAR *argv[]) {
PIN_InitSymbols(); PIN_Init(argc,argv));
IMG_AddInstrumentFunction(ImageLoad, 0);
PIN_StartProgramProbed(); }

Malloc Wrapping – Probe Mode

47

Using Probes to Call Analysis
Functions
• RTN_InsertCallProbed() invokes the analysis

routine before or after the specified rtn

– Use IPOINT_BEFORE or IPOINT_AFTER

– Pin may NOT be able to find all AFTER points on

the function when it is running in Probe-Mode

– PIN IARG_TYPEs are used for arguments

• To use:

– Must use PIN_StartProgramProbed()

– Application prototype is required for IPOINT_AFTER

48

Tool Writer Responsibilities

• No control flow into the instruction space where
probe is placed

–5 bytes on IA-32, 7 bytes on Intel64

–Branch into “replaced” instructions will fail

–Probes at function entry point only

• Thread safety for insertion and deletion of probes

–During image load callback is safe

–Only loading thread has a handle to the image

• Replacement function has same behavior as
original

49

The CONTEXT structure

50

• CONTEXT* is a Handle to the full register context of
the application at a particular point in the execution

– It can NOT be dereferenced.

– It can only be passed to Pin API functions

• CONTEXT* is passed by default to a number of Pin
Callback functions: e.g.

– ThreadStart

– Registered by PIN_AddThreadStartFunction

– BufferFull

– Registered by PIN_DefineTraceBuffer

– OnContextChange

– Registered by PIN_AddContextChangeFunction

CONTEXT*

51

CONTEXT*,
IARG_CONST_CONTEXT, IARG_CONTEXT

• Pin provides API to Get and Set registers within the CONTEXT

• Can request CONTEXT* be passed to an analysis function by
requesting IARG_(CONST)_CONTEXT

• Requesting IARG_CONTEXT
– The analysis function will NOT be inlined
– The passing of the CONTEXT* is time consuming

• Passing IARG_CONST_CONTEXT is ~4X faster than
IARG_CONTEXT
– Contents of CONTEXT* passed for IARG_CONST_CONTEXT can NOT be

changed

52

CONTEXT* …

• Changes made to the contents of a CONTEXT*

– IARG_CONTEXT (Analysis routines)
– Changes made will be visible in subsequent PIN API calls made from

within the nesting of the analysis function
– Changes made will NOT be visible in the application context after

return from the analysis function

– Passed to PIN Callbacks
– Changes made will be visible also after callback returns

53

#include "pin.H"
void *FunctionReplacer (

CONTEXT * ctxt,
AFUNPTR pf_malloc, size_t size)

{
void * res;
CONTEXT writableContext, * context = ctxt;

if (TimeForRegChange()) {

PIN_SaveContext(ctxt, &writableContext); // need to copy the ctxt into a writable context

context = & writableContext;

PIN_SetContextReg(context , REG_GAX, 1);

}

PIN_CallApplicationFunction(context , PIN_ThreadId(), CALLINGSTD_DEFAULT, pf_malloc,
PIN_PARG(void *), &res, PIN_PARG(size_t), size);

return res;
}
VOID ImageLoad(IMG img, VOID *v) { // Pin callback. Registered by IMG_AddInstrumentFunction

RTN rtn = RTN_FindByName(img, “Function");

PROTO proto = PROTO_Allocate(PIN_PARG(void *), CALLINGSTD_DEFAULT,
"proto", PIN_PARG(size_t), PIN_PARG_END());

RTN_ReplaceSignature (rtn, AFUNPTR(FunctionReplacer), IARG_PROTOTYPE, proto,
IARG_CONST_CONTEXT,
IARG_ORIG_FUNCPTR, IARG_FUNCARG_ENTRYPOINT_VALUE, 0, IARG_END);

}

int main(int argc, CHAR *argv[]) {
PIN_InitSymbols();
PIN_Init(argc,argv));
IMG_AddInstrumentFunction(ImageLoad, 0);
PIN_StartProgram();

}

Function Replacement with register change

54

Multi - Threading

55

Multi-Threading

• Pin fully supports multi-threading

– Pin does not serialize application threads executing jitted
code (including analysis code)
– Pin provides synchronization constructs to introduce

serialization if needed.
– System calls require serialized entry to the VM before and after

execution – BUT actual execution is NOT serialized

– Pin does NOT create any threads of it’s own

– Pin callbacks are serialized

– Jitting is serialized
– Only one application thread can be jitting code at any time

56

Multi-Threading services

• Pin Tools can:

– Track Threads
– ThreadStart, ThreadFini callbacks
– IARG_THREAD_ID

– Use Pin Virtual registers and TLS for thread-specific data

– Use Pin Locks to synchronize threads

– Create dedicated threads to do Pin Tool work

57

Using the TLS

• Pin tools can allocate TLS slots, by using the
PIN_CreateThreadDataKey() function

– Deallocate with PIN_DeleteThreadDataKey()

• Each thread can use PIN_SetThreadData() and
PIN_GetThreadData() to access the TLS slots

– Initial per-thread value is NULL

• Allocating a TLS slot receives an optional callback
function

– Callback will be invoked per thread upon thread exit, if the
thread has a non-NULL value in the corresponding slot

58

Virtual registers

• Pin’s context structure includes several scratch
general purpose registers

– Do not map to actual architecture registers

• Can be accessed and modified same as physical
registers

• Preferred to use the PIN_ClaimToolRegister() API

– Claims a free scratch register to be used by the tool

– Can help avoid contention when tool has several
components which all require scratch registers

59

Pin Tool threads

• Pin tools may create their own threads

– These threads will not be instrumented

• Use Pin API PIN_SpawnInternalThread()

– System services, like clone() or CreateThread(), must not
be used.

• Tool threads can only be created in the tool’s
main(), or from within another tool thread

60

Locking Guidelines

• Basic Rules

– Any locks acquired in a Pin callback, must be released
before returning from that callback.

– Any locks acquired in an analysis routine, must be released
before returning from the analysis routine.

– If the tool calls a Pin API from a callback, it should not hold
any tool locks when calling the API.

– If the tool calls a Pin API from an analysis routine, it should
not hold any tool locks when calling the API

– For some Pin API calls, the tool may need to acquire the Pin
client lock first (see documentation of the API)

61

Locking Guidelines

• Advanced Rules

– Some rules may be partially relaxed, in specific cases

– If the tool acquires lock L in an analysis routine, it may
continue holding L after the analysis routine completes:

– Lock L must be released before leaving the trace that contains
the analysis routine.

– A trace may have multiple exit points

– The tool must establish a callback which, in case of exception,
releases the lock L. Tools can use
PIN_AddContextChangeFunction() to establish this call-back.

– Lock L may not be acquired by any Pin callback

– The tool may hold a lock L while calling a Pin API, if that
lock obeys the following sub-rule:

– The tool does not acquire lock L from any call-back.

– The Pin API invoked does not cause Application code to execute

62

Instrumenting a
process tree

63

Instrumenting a Process Tree

• Process A creates Process B

– Process B creates Process C and D

– And so forth

• Pin can instrument all or part of the process tree
– Use the –follow_exevc Pin invocation switch to turn this on

– Can use different Pin modes (Jit or Probe) on the different processes in
the process tree.

– Can use different Pin Tools on the different processes of a process tree.

• Architecture of processes in the process tree may be
intermixed
– e.g. Process A is 32bit, Process B is 64 bit, Process C is 64 bit, Process D

is 32 bit…

64

Instrumenting a Process Tree
// If this Pin Callback returns FALSE, then the child process will run Natively
BOOL FollowChild(CHILD_PROCESS childProcess, VOID * userData) {

BOOL res;
INT appArgc;
CHAR const * const * appArgv;

OS_PROCESS_ID pid = CHILD_PROCESS_GetId(childProcess);

// Get the command line that child process will be Pinned with, these are the Pin invocation switches
// that were specified when this (parent) process was Pinned
CHILD_PROCESS_GetCommandLine(childProcess, &appArgc, &appArgv);

INT childArgc = 0;
CHAR const * childArgv[20];
[…] // :::: Create the Child’s Argc and Argv :::

CHILD_PROCESS_SetPinCommandLine(childProcess, childArgc, childArgv);

return TRUE; /* Specify Child process is to be Pinned */
}

int main(INT32 argc, CHAR **argv) {
PIN_Init(argc, argv);
cout << " Process is running on Pin in " << PIN_IsProbeMode() ? " Probe " : " Jit " << " mode "

// The FollowChild Callback will be called when the application is about to spawn a child process
PIN_AddFollowChildProcessFunction (FollowChild, 0);

if (PIN_IsProbeMode())
PIN_StartProgramProbed(); // Never returns

else
PIN_StartProgram();

}

65

Part 3
optimizing Pin tools performance

66

Total Overhead = Pin Overhead + Pintool Overhead

~5% for SPECfp and ~50% for SPECint

Pin team’s job is to minimize this

Usually much larger than pin overhead

Pintool writers can help minimize this!

Reducing Instrumentation
Overhead

67

Instrumentation
Routines
Overhead

Pintool’s Overhead

Frequency of calling
an Analysis Routine

Work required for transiting
to Analysis Routine

Reducing the Pintool’s Overhead

Analysis
Routines
Overhead

+

Work required in the
Analysis Routine

x

Work done inside
Analysis Routine

+

68

Tip #1
Reducing Work in Analysis Routines

•Key: Shift computation from analysis routines to
instrumentation routines whenever possible

•This usually has the largest speedup

69

Counting control flow edges

call

jne

ret

jne

jmp

100
60

40

60

40

40

1

70

Edge Counting: a Slower Version

...

void docount2(ADDRINT src, ADDRINT dst, INT32 taken)

{

COUNTER *pedg = Lookup(src, dst);

pedg->count += taken;

}

void Instruction(INS ins, void *v) {

if (INS_IsBranchOrCall(ins))

{

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)docount2,

IARG_INST_PTR, IARG_BRANCH_TARGET_ADDR,

IARG_BRANCH_TAKEN, IARG_END);

}

}

...

Instrumentation

Analysis

71

Edge Counting: a Faster Version

void docount(COUNTER* pedge, INT32 taken) {

pedg->count += taken;

}

void docount2(ADDRINT src, ADDRINT dst, INT32 taken) {

COUNTER *pedg = Lookup(src, dst);

pedg->count += taken;

}

void Instruction(INS ins, void *v) {

if (INS_IsDirectBranchOrCall(ins)) {

COUNTER *pedg = Lookup(INS_Address(ins),

INS_DirectBranchOrCallTargetAddress(ins));

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) docount,

IARG_ADDRINT, pedg, IARG_BRANCH_TAKEN, IARG_END);

}

else if INS_IsIndirectBranchOrCall(ins) {

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) docount2,

IARG_INST_PTR, IARG_BRANCH_TARGET_ADDR,

IARG_BRANCH_TAKEN, IARG_END);

}

}

…

Analysis

Instrumentation

72

•Key: Instrument at the largest granularity
whenever possible

•Instead of inserting one call per instruction, insert
one call per basic block or trace

Tip #2
Reduce Analysis Calls Frequency

73

Slower Instruction Counting

sub $0xff, %edx

cmp %esi, %edx

jle <L1>

mov $0x1, %edi

add $0x10, %eax

counter++;

counter++;

counter++;

counter++;

counter++;

74

Faster Instruction Counting

sub $0xff, %edx

cmp %esi, %edx

jle <L1>

mov $0x1, %edi

add $0x10, %eax

counter += 3

counter += 2

Counting at BBL level

sub $0xff, %edx

cmp %esi, %edx

jle <L1>

mov $0x1, %edi

add $0x10, %eax

counter += 5

Counting at Trace level

counter+=3

L1

75

Tip #3
Reducing Work for Analysis Transitions

• Reduce number of arguments to analysis routines

• Inline analysis routines

• Use conditional instrumentation

• See how in next slides

76

Reduce Number of Arguments

•Eliminate arguments only used for debugging

•Instead of passing TRUE/FALSE, create 2 analysis
functions

– Instead of inserting a call to:

Analysis(BOOL val)

– Insert a call to one of these:

AnalysisTrue()

AnalysisFalse()

– IARG_CONTEXT is very expensive (> 10
arguments)

– Use the cheaper IARG_CONST_CONTEXT

77

Inlining

int docount0(int i) {

x[i]++

return x[i];

}

Inlinable int docount1(int i) {

if (i == 1000)

x[i]++;

return x[i];

}

Not-inlinable

int docount2(int i) {

x[i]++;

printf(“%d”, i);

return x[i];

}

Not-inlinable

void docount3() {

for(i=0;i<100;i++)

x[i]++;

}

Not-inlinable

78

Inlining

•Use the –log_inline invocation switch to record inlining decisions in pin.log

pin –log_inline –t mytool – app

•Look in pin.log

Analysis function (0x2a9651854c) from mytool.cpp:53 INLINED

Analysis function (0x2a9651858a) from mytool.cpp:178 NOT INLINED

The last instruction of the first BBL fetched is not a ret instruction

•Look at source or disassembly of the function in mytool.cpp at line 178

0x0000002a9651858a push rbp

0x0000002a9651858b mov rbp, rsp

0x0000002a9651858e mov rax, qword ptr [rip+0x3ce2b3]

0x0000002a96518595 inc dword ptr [rax]

0x0000002a96518597 mov rax, qword ptr [rip+0x3ce2aa]

0x0000002a9651859e cmp dword ptr [rax], 0xf4240

0x0000002a965185a4 jnz 0x11

– The function could not be inlined because it contains a control-flow changing
instruction (other than ret)

79

Conditional instrumentation

• A common scenario where the analysis routine
has a single “if-then”

– The “If” part is always executed

– The “then” part is rarely executed

– Useful cases:

1. “If” can be inlined, “Then” is not

2. “If” has small number of arguments, “then” has many arguments
(or IARG_CONTEXT)

• Pintool writer breaks analysis routine into two:

– INS_InsertIfCall (ins, …, (AFUNPTR)doif, …)

– INS_InsertThenCall (ins, …, (AFUNPTR)dothen, …)

80

IP-Sampling (a Slower Version)

VOID Instruction(INS ins, VOID *v) {

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)IpSample,

IARG_INST_PTR, IARG_END);

}

VOID IpSample(VOID* ip) {

--icount;

if (icount == 0) {

fprintf(trace, “%p\n”, ip);

icount = N + rand()%M; //icount is between <N, N+M>

}

}

const INT32 N = 10000; const INT32 M = 5000;

INT32 icount = N;

81

IP-Sampling (a Faster Version)

VOID Instruction(INS ins, VOID *v) {

// CountDown() is always called before an inst is executed

INS_InsertIfCall(ins, IPOINT_BEFORE, (AFUNPTR)CountDown,

IARG_END);

// PrintIp() is called only if the last call to CountDown()

// returns a non-zero value

INS_InsertThenCall(ins, IPOINT_BEFORE, (AFUNPTR)PrintIp,

IARG_INST_PTR, IARG_END);

}

INT32 CountDown() {

--icount;

return (icount==0);

}

VOID PrintIp(VOID *ip) {

fprintf(trace, “%p\n”, ip);

icount = N + rand()%M; //icount is between <N, N+M>

}

inlined

not

inlined

82

Jitting time

• Jitting is expensive

– Takes far more time to jit an instruction than to execute
a jitted instruction

• Portions of a workload where very many IPs are
being jitted, and executed a small number of
times

– Jitting time dominates execution time

– E.g.

– startup of a GUI app

– Compiler compiling a non-large file

– Vs Loop executing a large number of times

– Jitting time is amortized over execution time

83

Optimizing Your Pintools -
Summary
• Baseline Pin has fairly low overhead for non-jitting

portions of workloads (~5-20%)

• Adding instrumentation can increase overhead
significantly, but you can help!

1. Move work from analysis to instrumentation
routines

2. Explore larger granularity instrumentation

3. Explore conditional instrumentation

4. Understand when Pin can inline instrumentation

84

Part 4
Advanced Pin

OS Specifics: Windows

OS Specifics: Linux

Managing exceptions

Managing signals

Code Cache API

Debugging & Pin

TO BOLDLY GO WHERE FEW PINHEADS HAVE GONE BEFORE…

85

OS Specifics - Windows

86

Windows Challenges (1/2)

• Handling system calls

– Pin must intercept system calls to regain control of the application

on return from the system

– Pin must monitor system calls to notify instrumentation when DLLs

are loaded/unloaded, threads are created/terminated, etc.

– System call interface is undocumented

– System call numbers potentially change with each system

build

• Handling exceptions and asynchronous interruptions

– To maintain control and notify instrumentation about control flow

changes Pin must intercept all transitions from kernel to user mode

– Windows is not designed to have an independent agent

interposed between the kernel and application

– The kernel dispatches interruptions via (undocumented) entry

points in ntdll.dll

The main obstacle: direct interface between user-level code and Windows kernel is undocumented

87

Windows Challenges (2/2)
• Injection

– PIN VMM is a DLL that must be loaded into the address space of the
application to get initial control of the process

– Windows is not designed for proprietary loader

– Common practice: intercept control at the entry point of the application

– Instrumentation can not observe initialization procedures in statically
linked application DLLs

– Injection presented in the introduction is referred to as Late Injection

– It misses the initialization procedures in statically linked application DLLs

– Early injection is not trivial

• Isolation of instrumentation from the application

– Instrumentation runs in the same process as the application it is
observing

– Enabling C run-time in the instrumentation causes sharing of system
libraries (e.g. kernel32.dll) and their state with the application

– To be transparent, Pin must

– Preserve original state of system resources

– Avoid reentrant use of shared libraries

Pin minimizes its dependence on Windows system services in order to maximize observability and achieve better
isolation

88

Injection
• Injection is the procedure for loading the PINVM.DLL into the

address space of an application and gaining control of execution

• Other systems hook the entry point of the application

– Too late: initialization procedures in application DLLs can not be

instrumented

• For maximum observability, Pin should inject itself into a new

process as early as possible, however…

• Pin depends on some basic system services so it is not possible to

load PINVM.DLL until the loader and kernel32.dll have initialized

• The optimal injection point: just after initialization of

kernel32.dll

– Injection presented in the introduction is referred to as Late
Injection

– It misses the initialization procedures in staticly linked application DLLs

89

Early Injection step by step

pin –t pintool.dll -- application.exe

Pin Boot Routine

 Create (suspended) application process

 Attach to the application as a debugger

 Run the application process until kernel32.dll
is loaded and initialized

 Copy Boot Routine into the application
process and set PC to start of the routine

 Detach from the application process

 Load and start Pin VMM

 Load the instrumentation tool

PIN.EXE

Pin Boot Routine

PINVM.DLL

 Instrument and execute the application

Debugging API

All application instructions are executed under Pin control

PIN.EXE

Windows Kernel

Application Process

NTDLL.DLL

APPLICATION.EXE

APPLICATION.DLL

KERNEL32.DLL

PINVM.DLL

PINTOOL.DLL

 Resume application process

90

Handling System Calls

• Pin must manage the execution of system calls

– To regain control when the system returns to user mode with a modified

thread context

– To monitor and handle some important system events

– Loading DLLs, creation and termination of threads and processes, etc.

• Pin intercepts system call instructions, not Win32 APIs

– Pin instruments all modules in the user space, including system libraries

– Some applications use native API (NTDLL interface) directly, bypassing

Win32 API

– Win32 API layer is very wide, while system call instructions are easy to

discover

• Three steps in managing system calls:

– Detect a system call and redirect control to VMM

– Execute the system call on behalf of the application

– Regain control when the kernel returns to user with a new context

– The system may interrupt system call execution by asynchronous calls to

application procedures

91

System Call Interception
• Pin detects system call instructions when it generates traces

in the code cache

– IA-32: sysenter and int 2E; Intel64: syscall; etc.

– This is a static analysis, so the overhead is low

• Pin executes system calls in VMM, not in the code cache -

emits jump to VMM instead of the system call instruction

– Enables flushing the code cache while a system call blocks in the kernel

– VM lock is NOT held during the actual syscall

• Some system calls may affect Pin’s internal state. To handle

them properly, Pin must know the corresponding system call

numbers

– Windows system call numbers are unpublished and potentially change

with each system build

– Pin discovers system call numbers dynamically, on the early stage of the

injection process

– We trace the corresponding NTDLL functions until a system call instruction is

reached and then read the system call number from the EAX/RAX register

92

System Call Execution

• The System Call Emulator executes all “known” system calls that

may affect the VMM state, e.g. memory mappings, creation and

termination of threads and processes, etc.

• The remaining, unknown system calls are forwarded to the

System Gate

– Per-thread procedure that transparently executes system calls and regains

control upon return or interruption

– Fills/spills original context before/after system calls

– Recovers original context (PC) when a system call is interrupted

Switch to the application context

int 2e

Switch to the Pin context

System Call Emulator System Gate

Code Cache

Original Code

sysenter

jmp VMM

Notify Pintool before system call

ReturnFromSystemCall:

Notify Pintool after system call

Is “known” system call?

Execute/Emulate

Y

jmp ReturnFromSystemCall

N

System Gate executes system calls “blindly”, assuming that each of them can arbitrarily
modify context and control flow (if interrupted)

93

User Procedure Calls (UPC)

• UPC is a control transfer from the kernel to a user-level

procedure

• Asynchronous procedure call (APC)

– Asynchronous events: file I/O completion, timer expiration

– Thread initialization APC signals start of a new thread

• Callback

– Asynchronous Windows GUI message

• Exception

– Access violation, illegal instruction, divide by zero, etc.

• Asynchronous events are not delivered immediately, but wait

in queue until the application invokes an interruptible

(alertable) system call

• Pin must intercept UPCs to maintain control of the

application and recover the original interruption

context (visible to the application)

94

UPC Interception

• The kernel dispatches UPCs through entry points in NTDLL.DLL

• To intercept UPCs, Pin overwrites the NTDLL entry points with trampolines that

jump to the Event Dispatcher in Pin

• When a UPC is intercepted, Pin recovers original interruption context in the UPC

frame prepared by the kernel

– JIT Compiler recovers context of exceptions that occurred in the code cache

– System Call Emulator recovers context of interrupted system calls

NTDLL.DLL

Windows kernel

Pin VMM

Code

Cache

UPC Dispatcher

KiUserApcDispatcher KiUserCallbackDispatcher KiUserExceptionDispatcher

Translated

KiUserApcDispatcher

Translated

KiUserCallbackDispatcher

Translated

KiUserExceptionDispatcher

APC Callback Exception

Recover original PC
in the

APC frame

Save PC of the
interrupted
system call

Recover original
context in the

exception frame

Pin intercepts all control transfers from the kernel to the user mode

95

Exceptions (1/2)

• Unlike APCs and callbacks that are queued and delivered at the
next alertable system call, exceptions are synchronous events

• Exceptions do not necessarily cause abnormal termination of the

process – the application may expect and handle exceptions

• Pin must provide exception handlers with the same exception

information that accompanies exceptions in the native

application

– Exception context, code and exception-specific parameters

• From Pin’s perspective, there are three kinds (sources) of

exceptions in Windows applications:

– An attempt to fetch an invalid or inaccessible instruction

– An attempt to execute a faulting instruction

– Software exceptions generated by the application

96

Exceptions (2/2)
• Decoder (fetcher) of instructions raises an exception if it

encounters an invalid or inaccessible instruction

– When the kernel delivers this exception back to the user mode, Pin skips the

context translation because it sees original PC in the exception context

• Other hardware exceptions that occur in the code cache

– Recovery of the original exception context is nontrivial due to register

allocation

– Pin retranslates the interrupted trace to get the virtual-physical register

bindings at the faulting point

– Optimization: small cache of register bindings for frequent exceptions

• Other hardware exceptions that occur in the tool code

– Pin APIs for tool to manage it’s exceptions

• Application can generate software exceptions using Win32 API

– The exception context represents an original application state

– Context translation is not needed

Pin delivers precise exceptions to applications handlers

97

Multithreading Support

• Pin instruments and runs all threads of the application

from the first to the last user-mode instruction

– Attaches to a new thread when the system delivers the thread

initialization APC

– Maintains control until the thread exits

– Intercepts threads created by remote processes

• Pin’s threading activities are transparent to the

application

– Pin VMM serializes some of its operations (e.g. JIT compilation), but
never executes code of the application under Pin locks

– Except for initialization phase, Pin never acquires windows locks in
system libraries, e.g. loader lock or process heap lock

– Each thread has a shadow stack that is used by Pin VMM and Pintool

98

Thread-Local State

• Key elements of Pin’s thread-local state:

– Spill area keeps values of spilled virtual registers

– JIT-compiled traces need fast access to spilled register values

– Pin “steals” one physical register to point to the spilling area

– TEB (Thread Environment Block) state

– Keeps original thread-local state of system libraries, e.g. last Win32
error value, stack limit

– C run-time routines may access/modify these values

– Need to preserve the original state while running in Pin VMM or
PinTool

– System call state

– Contains information about active and interrupted system calls in
the thread

– The information is used to restore the original context on return
from the system

• Pin steals one TLS slot from the application to enable
fast access to the thread-local data in Pin VMM

99

Thread Suspension and Context Manipulation

• A thread can suspend another thread and read/modify its context

– SuspendThread(), GetThreadContext(), SetThreadContext()

• Pin must emulate the corresponding system calls to avoid
deadlocks and transparency issues

– Target thread may hold a Pin lock

– The thread context is not original

– Suspended traces disable flushing the code cache

• Solution: Force a thread to leave the code cache and wait

until the thread reaches a safe point

Safe point = no locks, not in the code cache, accessible original context

– Unlink the suspended trace from successors and let it enter VMM

– Block the thread in the safe VMM point or in the System Gate

– Use thread-local data to store and access the original context
associated with the safe point

100

Isolation (1/2)

• Pin Tools are compiled to use the static CRT

• Pin on Windows does not separate DLLs loaded by
the tool from the application DLLs - it uses the
same system loader.

– The tool should not load any DLL that can be shared with
the application.

– The tool should avoid static links to any common DLL,
except for those listed in PIN_COMMON_LIBS (see
source\tools\ms.flags file).

101

Isolation (2/2)

• Pin on Windows guarantees safe usage of C/C++
run-time services in Pin tools, including indirect
calls to Windows API through C run-time library.

– Any other use of Windows API in Pin tool is not guaranteed
to be safe

• Pin uses some base types that conflict with
Windows types. If you use "windows.h", you may
see compilation errors. So do:

namespace WINDOWS { #include <windows.h> }

102

OS Specifics - Linux

103

Linux Challenges (1/2)

• Handling system calls

– Pin must intercept system calls to regain control of the application

on return from the system

– Pin must monitor system calls to notify instrumentation when DLLs

are loaded/unloaded, threads are created/terminated, etc.

– Some system calls may behave differently on different Linux

distributions.

• Signal handling

– Pin must identify whether the signal originated from the application,

the tool or Pin itself.

– Pin cannot seem to interfere with the applications signal

mask.

104

Linux Challenges (2/2)

• Injection

– Pin relies on the ptrace system call for injection.

– Some platforms do not allow tracing a parent application by a child.
In such cases the application is run on the child.

• Isolation of instrumentation from the application

– Instrumentation runs in the same process as the application it is

observing.

– Pin must emulate several libc services.

105

Child

(Injector)
Pin (Injectee)

fork

exitLoop = FALSE;

Ptrace TraceMe

while(!exitLoop){}

Ptrace Injectee – Injectee Freezes

Injectee.exitLoop = TRUE;

execv(gzip);

// Injectee Freezes

Ptrace continue (unFreezes Injectee)

Ptrace Copy (save, gzip.CodeSegment, sizeof(MiniLoader))

PtraceGetContext (gzip.OrigContext)

PtraceCopy (gzip.CodeSegment, MiniLoader, sizeof(MiniLoader))

Ptrace continue@MiniLoader (unFreezes Injectee)

MiniLoader loads Pin+Tool,
allocates Pin stack

Kill(SigTrace, Injector):
Freezes until Ptrace Cont

Execution of Injector
resumes after execv(gzip)
in Injectee completes

Ptrace Detach

Wait for MiniLoader
complete (SigTrace from
Injectee)

MiniLoader

Pin Code and

Data

MiniLoader

gzip Code and

Data

Code to Save

Ptrace Copy (gzip.CodeSegment, save, sizeof(MiniLoader))

Ptrace Copy (gzip.pin.stack, gzip.OrigCtxt, sizeof (ctxt))

Ptrace SetContext (gzip.IP=pin, gzip.SP=pin.Stack)

gzip OrigCtxtPin Code and

Data

MiniLoader

Inscount2.so

gzip (Injectee)

Pin stack

IP

106

Handling System Calls

• Pin must manage the execution of system calls

– Pin must maintain control all the time

– System calls are executed inside pin and return to the application

– In most cases the system call is executed without the pin VM lock

– Certain system calls are emulated by pin (see below)

• System call emulation

– Pin detects if a system call needs emulation.

– Pin needs to know the attributes of each memory page for SMC support

– Therefore all system calls related to memory are emulated by pin

– Signal related system calls are emulated

– Creating of new threads and new child processes

– Setting/getting of the TLS segment registers

– Thread and process termination

107

Signal Handling

• Pin registers its own signal handlers for all signals, and saves
the application’s handlers.

• Pin must handle both synchronous and asynchronous signals.

• Asynchronous signals:
– These signals may be delivered “at will” so Pin waits for safe point to deliver

them.

– When such a signal arrives, Pin’s internal handler registers this signal, unlinks the
current trace and resumes execution from the code cache.

– At the trace’s exit point, the executing thread jumps to the VM, thus transferring control
over to Pin. The VM checks if there are pending signals and calls the application’s
original signal handlers for these signals (jitting them).

• Synchronous signals:
– These signals must be delivered immediately.

– They may originate from the application, the tool or Pin itself.

– Pin’s internal handler is called, it determines the origin of the signal and propagates the
signal delivery to the tool and application if necessary.

– If signal is delivered to the application, the application’s signal handler is jitted.

108
10
8

Multithreading Support

• Pin instruments and runs all threads of the application

from the first to the last user-mode instruction

– Attaches to the thread upon the first user-space instruction

– Maintains control until the thread exits

• Pin’s threading activities are transparent to the

application

– The Pin VM serializes some of its operations (e.g. JIT compilation),
but never executes code of the application under Pin locks

– Each thread has a shadow stack that is used by the Pin VM and the
Pintool

– Pin and pintools are prohibited from using the pthread library due to
conflicts with some internal structures. Therefore Pin provides its own
APIs for thread creation and control.

109

Thread-Local Storage

•Segment virtualization

–TLS is accessed via the fs (64 bit) or gs (32 bit)
segment register.

–Both the application and Pin share this register, but
expect different values.

–Pin emulates the application’s usage of the fs/gs
register thus isolating the application’s TLS for Pin’s.

110

Isolation (1/2)

• Pin is injected in to address space and has its own
copy of the dynamic loader and runtime libraries
(GLIBC, etc).

• Pin uses a small library of CRT for direct calls to
system calls.

• The process has a single signals table (shared
among all threads), pin manages an internal signal
table and emulate all the system calls related to
signals.

111

Isolation (2/2)

• pthread functions cannot be called from an analysis
or replacement routine

• Pintools on Linux need to take care when calling
standard C or C++ library routines from analysis or
replacement functions

– because the C and C++ libraries linked into Pintools are
not thread-safe

112

Managing Exceptions

113

Exceptions

• Catch Exceptions that occur in Pin Tool code

– Global exception handler

– PIN_AddInternalExceptionHandler()

– Guard code section with exception handler

– PIN_TryStart()

– PIN_TryEnd()

114

Exceptions example (1/3)

VOID InstrumentDivide(INS ins, VOID* v)
{

if ((INS_Mnemonic(ins) == "DIV") &&
(INS_OperandIsReg(ins, 0)))

{ // Will Emulate div instruction with register operand
INS_InsertCall(ins,

IPOINT_BEFORE,
AFUNPTR(EmulateIntDivide),
IARG_REG_REFERENCE, REG_GDX,
IARG_REG_REFERENCE, REG_GAX,
IARG_REG_VALUE, REG(INS_OperandReg(ins, 0)),
IARG_CONST_CONTEXT,
IARG_THREAD_ID,
IARG_END);

INS_Delete(ins); // Delete the div instruction
}

}

int main(int argc, char * argv[])
{

PIN_Init(argc, argv);
INS_AddInstrumentFunction (InstrumentDivide, 0);
PIN_AddInternalExceptionHandler (GlobalHandler, NULL); // Registers a Global Exception Handler
PIN_StartProgram(); // Never returns
return 0;

}

115

Exceptions example (2/3)
VOID EmulateIntDivide(ADDRINT * pGdx, ADDRINT * pGax, ADDRINT divisor, CONTEXT * ctxt,

THREADID tid)
{

PIN_TryStart(tid, DivideHandler, ctxt); // Register a Guard Code Section Exception Handler

UINT64 dividend = *pGdx;
dividend <<= 32;
dividend += *pGax;
*pGax = dividend / divisor;
*pGdx = dividend % divisor;

PIN_TryEnd(tid); /* Guarded Code Section ends */
}

116

Exceptions example (3/3)
EXCEPT_HANDLING_RESULT
DivideHandler (THREADID tid, EXCEPTION_INFO * pExceptInfo,

PHYSICAL_CONTEXT * pPhysCtxt, // The context when the exception occurred
VOID *appContextArg) // The application context when the exception occurred

{
if(PIN_GetExceptionCode(pExceptInfo) == EXCEPTCODE_INT_DIVIDE_BY_ZERO)
{ // Divide by zero occurred in the code emulating the divide, use PIN_RaiseException to raise this

// exception at the appIP – for handling by the application
cout << " DivideHandler : Caught divide by zero." << PIN_ExceptionToString(pExceptInfo) << endl;

// Get the application IP where the exception occurred from the application context
CONTEXT * appCtxt = (CONTEXT *)appContextArg;
ADDRINT faultIp = PIN_GetContextReg (appCtxt, REG_INST_PTR);

// raise the exception at the application IP, so the application can handle it as it wants to
PIN_SetExceptionAddress (pExceptInfo, faultIp);
PIN_RaiseException (appCtxt, tid, pExceptInfo); // never returns

}
return EHR_CONTINUE_SEARCH;

}

EXCEPT_HANDLING_RESULT
GlobalHandler(THREADID threadIndex, EXCEPTION_INFO * pExceptInfo,

PHYSICAL_CONTEXT * pPhysCtxt, VOID *v)
{

cout << "GlobalHandler: Caught unexpected exception. " << PIN_ExceptionToString(pExceptInfo) << endl;
return EHR_UNHANDLED;

}

117

Monitoring Application Exceptions

• PIN_AddContextChangeFunction()

– Can monitor and change that application state at
application exceptions

int main(int argc, char **argv)

{

PIN_Init(argc, argv);

PIN_AddContextChangeFunction(OnContextChange, 0);

PIN_StartProgram();

}

118

Monitoring Application Exceptions

static void OnContextChange (THREADID tid,
CONTEXT_CHANGE_REASON reason,
const CONTEXT *ctxtFrom // Application's register state at exception point
CONTEXT *ctxtTo, // Application's register state delivered to handler
INT32 info,
VOID *v)

{
if (CONTEXT_CHANGE_REASON_SIGRETURN == reason

|| CONTEXT_CHANGE_REASON_APC == reason
|| CONTEXT_CHANGE_REASON_CALLBACK == reason
|| CONTEXT_CHANGE_REASON_FATALSIGNAL == reason
|| ctxtTo == NULL)

{ // don't want to handle these
return;

}

// CONTEXT_CHANGE_REASON_EXCEPTION
// change some register values in the context that the application will see at the handler
FPSTATE fpContextFromPin;
// change the bottom 4 bytes of xmm0
PIN_GetContextFPState (ctxtFrom, &fpContextFromPin);
fpContextFromPin.fxsave_legacy._xmm[3] = 'de';
fpContextFromPin.fxsave_legacy._xmm[2] = 'ad';
fpContextFromPin.fxsave_legacy._xmm[1] = 'be';
fpContextFromPin.fxsave_legacy._xmm[0] = 'ef';
PIN_SetContextFPState (ctxtTo, &fpContextFromPin);

// change eax
PIN_SetContextReg(ctxtTo, REG_RAX, 0xbaadf00d);

}

119

Managing Signals

120

Signals

• Tools can establish an interceptor function for
signals delivered to the application

– Tools should never call sigaction() directly to handle
signals.

– Interceptor function is called whenever the application
receives the requested signal, regardless of whether the
application has a handler for that signal.

– Interceptor function can then decide whether the signal
should be forwarded to the application

121

Signals

• A tool can take over ownership of a signal in order
to:
– use the signal as an asynchronous communication

mechanism to the outside world.
– For example, if a tool intercepts SIGUSR1, a user of the tool could

send this signal and tell the tool to do something. In this usage
model, the tool may call PIN_UnblockSignal() so that it will receive the
signal even if the application attempts to block it.

– "squash" certain signals that the application generates.
– a tool that forces speculative execution in the application may want to

intercept and squash exceptions generated in the speculative code.

• A tool can set only one "intercept" handler for a
particular signal, so a new handler overwrites any
previous handler for the same signal. To disable a
handler, pass a NULL function pointer.

122

Signals
BOOL EnableInstrumentation = FALSE;

BOOL SignalHandler(THREADID, INT32, CONTEXT *, BOOL, const EXCEPTION_INFO *, void *)
{

// When tool receives the signal, enable instrumentation. Tool calls
// PIN_RemoveInstrumentation() to remove any existing instrumentation from Pin's code cache.
EnableInstrumentation = TRUE;
PIN_RemoveInstrumentation();

return FALSE; /* Tell Pin NOT to pass the signal to the application. */
}

VOID Trace(TRACE trace, VOID *)
{

if (!EnableInstrumentation)
return;

for (BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl); bbl = BBL_Next(bbl))
BBL_InsertCall(bbl, IPOINT_BEFORE, AFUNPTR(AnalysisFunc), IARG_INST_PTR, IARG_END);

}
int main(int argc, char * argv[])
{

PIN_Init(argc, argv);

PIN_InterceptSignal(SIGUSR1, SignalHandler, 0); // Tool should really determine which signal is NOT in
// use by application

PIN_UnblockSignal(SIGUSR1, TRUE);
TRACE_AddInstrumentFunction(Trace, 0);

PIN_StartProgram();
}

123

Code-Cache API

124

Pin Code-Cache API

• The Code-Cache API allows a Pin Tool to:

– Inspect Pin's code cache and/or alter the code cache
replacement policy

– Assume full control of the code cache

– Remove all or selected traces from the code cache

– Monitor code cache activity, including start/end of
execution of code in the code cache

125

Pin Code-Cache API
VOID DoSmcCheck(VOID * traceAddr, VOID * traceCopyAddr, USIZE traceSize, CONTEXT * ctxP) {

if (memcmp(traceAddr, traceCopyAddr, traceSize) != 0) /* application code changed */ {
// the jitted trace is no longer valid
free(traceCopyAddr);
CODECACHE_InvalidateTraceAtProgramAddress((ADDRINT)traceAddr);
PIN_ExecuteAt(ctxP); /* Continue jited execution at this application trace */

}
}
VOID InstrumentTrace(TRACE trace, VOID *v) {

VOID * traceAddr; VOID * traceCopyAddr; USIZE traceSize;

traceAddr = (VOID *)TRACE_Address(trace); // The appIP of the start of the trace

traceSize = TRACE_Size(trace); // The size of the original application trace in bytes
traceCopyAddr = malloc(traceSize);

if (traceCopyAddr != 0) {
memcpy(traceCopyAddr, traceAddr, traceSize); // Copy of original application code in trace
// Insert a call to DoSmcCheck before every trace
TRACE_InsertCall(trace, IPOINT_BEFORE, (AFUNPTR)DoSmcCheck,

IARG_PTR, traceAddr,
IARG_PTR, traceCopyAddr,
IARG_UINT32 , traceSize,
IARG_CONTEXT,
IARG_END);

}
}
int main(int argc, char * argv[]) {

PIN_Init(argc, argv);
TRACE_AddInstrumentFunction(InstrumentTrace, 0);
PIN_StartProgram();

}

126

Debugging & Pin

127

Transparent debugging, and extending
the debugger

• Transparently debug the application while it is
running on Pin + Pin Tool

– PinADX: Customizable Debugging with Dynamic
Instrumentation (Presented at CGO 2012)

• Use Pin Tool to enhance/extend the debugger
capabilities

– Watchpoint: Is order of magnitude faster when
implemented using Pin Tool

– Which branch is branching to address 0

– Easy to write a Pin Tool that implements this

128

Debug Application while Running
Pin
•Useful for Pin-based emulators

–User can debug application while emulating

•Provide advanced debugging features with Pin:

–Stack monitoring features

–Buffer overrun detection

–Reverse debugging

–Write your own debugger extension via Pin

129

Naïve Solution Won’t Work

• Why can’t we just debug normally?
– Debugger sees Pin state, not application state

– Pin recompiles application code

– Instructions wrong, registers wrong, PC wrong, …

Pin

Application

T
o
o
l

GDB

Pined process

?

130

Pin Debugger Interface

• GDB debugs application (not Pin itself)

• Leverage GDB remote protocol ABI

Application
T
o
o
l

GDB
Debug

Agent

Pin

GDB remote
protocol (tcp)

Pin process

(unmodified)

131

1. Run Pin with -appdebug

2. Start GDB, enter “target remote …”

3. Set breakpoints, etc. Continue with “cont”

$ pin -appdebug -t tool.so -- ./application

Application stopped until continued from debugger.

Start GDB, then issue this command at the (gdb) prompt:

target remote :1234

Debug the Application with Pin

$ gdb ./application

(gdb) target remote :1234

(gdb) break main

(gdb) cont

132

Extending the Debugger

•Normal debugging with Pin useful but limited

•Extending the debugger:

–Add GDB commands via a Pin tool

–Stop at “semantic breakpoint” via
instrumentation

• Use the “monitor” keyword for implementing
custom commands

133

Stack Debugger Pintool

$ pin -appdebug -t stack-debugger.so --

./app

$ gdb ./app

(gdb) target remote :1234

(gdb) monitor stackbreak 4000

Break when thread uses 4000 stack bytes.

(gdb) cont

Thread uses 4004 stack bytes.

[…]

(gdb) monitor stats

Maximum stack usage: 8560 bytes.

Commands implemented

in Pintool

134

Stack-Debugger Instrumentation

•Thread Start:

•[…]

•sub$0x60, %esp

•cmp%esi, %edx

•jle<L1>

size = StackBase - %esp;

if (size > MaxStack) MaxStack = size;

if (size > StackLimit) TriggerBreakpoint();

StackBase = %esp;

MaxStack = 0; After each stack-changing

instruction

135

ManualExamples/stack-debugger.cpp

instrumentation routine

analysis routine

VOID Instruction(INS ins, VOID *)
{

if (INS_RegWContain(ins, REG_STACK_PTR))
{

IPOINT where = (INS_HasFallThrough(ins)) ?
IPOINT_AFTER : IPOINT_TAKEN_BRANCH;

INS_InsertCall(ins, where, (AFUNPTR)OnStackChange,
IARG_REG_VALUE, REG_STACK_PTR,
IARG_THREAD_ID, IARG_CONST_CONTEXT, IARG_END);

}
}

VOID OnStackChange(ADDRINT sp, THREADID tid, CONTEXT *ctxt)
{

size_t size = StackBase - sp;
if (size > StackMax) StackMax = size;
if (size > StackLimit) {

ostringstream os;
os << "Thread uses " << size << " stack bytes.";
PIN_ApplicationBreakpoint(ctxt, tid, FALSE, os.str());

}
}

136

ManualExamples/stack-debugger.cpp

int main() {

[…]

PIN_AddDebugInterpreter(HandleDebugCommand, 0);

}

BOOL HandleDebugCommand(const string &cmd, string *result) {
if (cmd == "stats")

{

ostringstream os;

os << "Maximum stack usage: " << StackMax << " bytes.\n";

*result = os.str();

return TRUE;

}

else if (cmd.find("stackbreak ") == 0)

{
StackLimit = /* parse limit */;
ostringstream os;
os << "Break when thread uses " << StackLimit << " stack bytes.";
*result = os.str();
return TRUE;

}

return FALSE; // Unknown command

}

137

Other Debugger Tools

• Breakpoint on buffer overrun

• Debug from a recorded log file

• Reverse debugging from a recording

• Design your own custom debugger tool

138

139

Summary

• Pin is Intel’s dynamic binary instrumentation engine

• Pin can be used to instrument all user level code
– Windows, Linux, OSX, Android
– IA-32, Intel64
– Product level robustness
– Jit-Mode for full instrumentation: Thread, Function, Trace, BBL, Instruction
– Probe-Mode for Function Replacement/Wrapping/Instrumentation only.
– Pin supports multi-threading, no serialization of jitted application nor of instrumentation code

• Pin API makes Pin tools easy to write
– Presented many tools, many fit on 1 ppt slide

• Pin performance is good
– Pin APIs provide for writing efficient Pin tools

• Popular and well supported
– 30,000+ downloads, 700+ citations

• Free Download
– www.pintool.org
– Includes: Detailed user manual, source code for 100s of Pin tools, tutorials

• Pin User Group
– http://tech.groups.yahoo.com/group/pinheads/
– Pin users and Pin developers answer questions

http://www.pintool.org/
http://tech.groups.yahoo.com/group/pinheads/

140

Final note

• Use the Pin manual !

www.pintool.org -> User’s manual

•A lot more information about using Pin

• Many more topics – beyond this tutorial

– How to debug your Pin tool

– Trace buffers

– System calls instrumentation

– Instruction decoding APIs (XED)

– … And many others

http://www.pintool.org/
http://software.intel.com/en-us/articles/pintool/#UserManual

Now go and write your Pin tools!

