
Game Developers Conference

Program Your Games Today.
Prepare for Tomorrow.

Rudolph Balaz
Director/GM of Game Engineering

Agenda

Brief History Lesson

Performance Variability

Impact on Games

Best Practices

Suggestions

Summary

Brief History Lesson: Moore’s Law & Architecture

Moore’s Law and Architecture
MULTI-CORE ERA ARCHITECTURE ERAMEGAHERTZ ERA

1980 1984 1988 1992 1996 2000 2004 2008 2012 2016

AI

CPU

GPU

FPGA

Transistor
density

Performance/$
Performance/watt

Frequency

Year

Purpose Built Client

EXPERIENCE
FIRST

SCALABLE ENERGY
EFFICIENT

OPTIMAL USE OF
MOORE’S LAW

Focus on Performance for General Purpose Compute (CPU)
Focus on Density for scalable compute (GPU, AI etc.)

Corporate Employee

Gamer

Mobile

Creator

Performance Variability

Frequency

Turbo Boost
▪ Intel® CoreTM processor i3,

Core i5, Core i7, Core i9 and
Intel® Xeon® series since 2008

▪ Increases frequency when
processor is in max
performance state

Turbo Boost
Max 3
▪ Increase single threaded

performance on the 2 favored
cores

▪ The 2 fastest cores on the die

Adaptive Boost
▪ 11th Gen Intel® CoreTM processor

i9-11900K and i9-11900KF

▪ Improves gaming performance by
opportunistically allowing higher
multi-core turbo frequencies

Overclocking
▪ Unlocked Intel® CoreTM

processors (K)

Processor Count

Physical Processors
▪ Desktop

• 65w to 150w

• Intel® CoreTM i9 – 8 to 10 cores

• Core i9 Extreme Edition 8 to 18 cores

▪ Enthusiast Laptop

• 30w to 65w – 6 to 8 cores

▪ Thin/Light laptop

• 12w to 28w – 4 cores

Logical Processors
▪ Intel® Hyper-Threading Technology

• Allows more than one thread to run on each core

▪ Typically, available on Core i5 and above

▪ Can be a performance boost on some workloads

▪ Available on more systems than ever before

▪ Trivia Question:

• Does Hyper-Threading apply to all processors
on a package?

So, What’s the Problem?

Heat & Power
▪ Frequency

▪ Cores

▪ Threading

▪ Packaging

▪ Chassis

Not all workloads require max
performance or max feature sets

▪ Games usually have a sweet spot around 8
cores or less

▪ Or various bottlenecks – Threading,
Memory, I/O, etc.

Intel® Core™ Processor with Intel® Hybrid Technology
▪ Launched in 2019 with 2 processors in heterogenous config

▪ High level goals:

• Balance of performance and power efficiency in small footprint

• Enable design flexibility for mobile form factors, such as foldable

• Always on, always connected, very low standby power

SUNNY COVE

▪ Concentrate on single and
limited threading scenarios

▪ Performance focused

TREMONT

▪ Concentrate on throughput
and power-limited scenarios

▪ Efficiency focused

• 1 x Intel “Sunny Cove” core used for performance, serial, compute threads

• 4 x Intel “Tremont” cores used for efficient, parallel, compute threads

▪ Application runs on:

Impact on Games

Assumptions You Should No Longer Make

There can be a
significant performance
delta between cores

▪ Even identical cores may run at
different frequencies

There may be
1, 2, or more
faster cores

The fastest core
may move around
the package

Hyperthreading may be
available on only some
cores in a package

▪ Logical core count may not equal
2x physical core count

The core topology
layout may not be
simple

▪ Performance, ordering or
relationship between logical
processors may change

ISA may be identical,
but specific
performance of an
instruction may vary

Running efficiently
or slower may be
overall faster

Power may be shared
between
GPU/CPU/Other ->
frequency impact

The Critical Path

Definition: The extended critical path is the executed code segments of a program that, when
reduced with a small ∑, will reduce the completion time on a given number of processors.

Core 0

Core 1

Core 1

LP 4

Core 2

LP 6

LP 5

LP 3

Task

Task Task

Task

Task

Time

LP 0 Task

LP 1 Task Task

Task

Task

Task Task Task

Task

Task

Task

Task

Task

Task

Task

Task

Best Practices

Profile your workload

Don’t oversubscribe your thread pool

Avoid static partitioning, allow cores to steal
work from other cores

Avoid scheduling lower priority task on the
same cores as your critical path
▪ Understand how your middleware uses threads

▪ Don’t use sibling cores if your workload can’t benefit from
hyperthreading

▪ Avoid unnecessary context switches

▪ Do not use Processor Affinity

Avoid scheduling lower priority task on the
same cores as your critical path

Understand how your middleware
uses threads

Job systems need to dynamically balance based
on core characteristics

Techniques for Maximizing Performance

Use SetThreadPriority(HANDLE, THREAD_PRIORITY_ABOVE_NORMAL) work that is
▪ Frequency/latency sensitivity
▪ Critical Path
▪ Render thread
▪ Needs Fastest ISA

Use SetThreadPriority(HANDLE, THREAD_PRIORITY_BELOW_NORMAL) work that is
▪ Secondary workloads
▪ Throughput workloads
▪ Async workloads
▪ IO threads
▪ Background threads/processes

Try implementing

▪ A Primary and Secondary thread pool for different classes of work
▪ Decouple asynchronous workloads from primary thread pool

• Shader Compilation, Audio Mixing, Asset Streaming, Decompression
▪ Offload none critical work to secondary thread pool
▪ Task stealing from primary to secondary?

Call To Action

Verify your assumptions
about the processor
architecture

Make your code resilient to
variations in core
performance

Take advantage of the
performance deltas by
putting the right work on
each core

Use Thread Priority and
QoS APIs

Allocate just enough
threads for your workload

The only constant in the
future is change - prepare
for it

API Reference

Detecting The Cores

https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-processor_relationship

https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-processor_relationship

Hard vs Soft Affinity

Hard affinity using SetThreadAffinityMask, is a contract with OS,
prevents optimizations for power and performance

SetThreadIdealProcessor()

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-
processthreadsapi-setthreadidealprocessor

▪ You can use the GetSystemInfo function to determine the number of processors on the
computer.

▪ You can also use the GetProcessAffinityMask function to check the processors on which the
thread is allowed to run. Note that GetProcessAffinityMask returns a bitmask whereas
SetThreadIdealProcessor uses an integer value to represent the processor.

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-setthreadidealprocessor
https://docs.microsoft.com/en-us/windows/desktop/api/sysinfoapi/nf-sysinfoapi-getsysteminfo
https://docs.microsoft.com/en-us/windows/desktop/api/winbase/nf-winbase-getprocessaffinitymask

Setting Quality of Service for a Process or Thread

▪ MS provides 2 APIs to indicate importance of work done by thread/process

• SetProcessInformation()

• https://msdn.microsoft.com/en-us/library/windows/desktop/hh448389(v=vs.85).aspx

• SetThreadInformation()

• https://msdn.microsoft.com/en-us/library/windows/desktop/hh448390(v=vs.85).aspx

BOOL WINAPI SetProcessInformation(

In HANDLE hProcess,

In PROCESS_INFORMATION_CLASS ProcessInformationClass,

_In_reads_bytes_(ProcessInformationSize) ProcessInformation,

In DWORD ProcessInformationSize

);

ProcessMemoryPriority and

ProcessPowerThrottling

PROCESS_POWER_THROTTLING_STATE
Data structure

https://msdn.microsoft.com/en-us/library/windows/desktop/hh448389(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh448390(v=vs.85).aspx

Legal Notices and Disclaimers

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of
performance, course of dealing, or usage in trade.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any
patent claim thereafter drafted which includes subject matter disclosed herein.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata are available on request.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be
absolutely secure. Check with your system manufacturer or retailer or learn more at [intel.com].

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may
affect your actual performance.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates.

Your costs and results may vary.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3
instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this
product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

http://www.intel.com/benchmarks

