
Applying DirectX* Sampler Feedback:
Texture Space Shading and Streaming
with DirectStorage*

John Gierach, Graphics Driver Performance Lead
Allen Hux, Graphics Software Architect
Intel Corporation

* other names and brands may be claimed as the property of others

Game Developers Conference

Agenda

Overview

Texture Space Shading

UL 3DMark* Sampler Feedback Feature Test

Mip Region Size

Conclusion & Call to Action

References

D3D12 Sampler Feedback Background

What is
feedback?

▪ The reverse of texture sampling: which texels were read?

▪ Efficiently determine what the hardware did

▪ Pair “feedback” texture with your “real” texture asset

There are
two types of
Sampler
Feedback:

▪ Mip Region Used

▪ Min Mip Feedback

Mip Region Used

Feedback per mip region within a mip

Texture loaded per min mip feedback

Texel value = 0xFF if any texel in region
touched

Good for texture space shading

0 1 2 3 4 5

min mip

0 1 2 3 4 5

Mip Mip Feedback

Texture loaded per min mip feedback

min mip

▪ Texel value = min mip sampled for a mip region

▪ Stay tuned for Allen's talk for all the details

Min Mip Feedback

Agenda

Overview

Texture Space Shading

UL 3DMark* Sampler Feedback Feature Test

Mip Region Size

Conclusion & Call to Action

References

Texture Space Shading

Pass 1:

Perform expensive
lighting calculations
and store them in
textures

Pass 2:

Rasterize scene while
using lit textures from
Pass 1

Skip redundant lighting calculations

▪ Reuse within the same frame (e.g. VR rendering)
▪ Reuse across frames

Why Use
Texture Space

Shading?

Shading rate decoupled from rasterization rate

▪ Performance versus quality adjustable with
sampler bias

Remove shimmer artifacts rendering
from far objects

Less Texels Shaded == Better Performance

How Does
Sampler

Feedback Help?

Sampler feedback will tell us which texels
will be sampled during rasterization

Only shade texels that will be sampled
during rasterization

▪ FeedbackTexture2D
::WriteSamplerFeedback

Render Scene
while engaging

DX12 Sampler Feedback Flow
Begin Frame

End frame

Raster Scene to Populate
Feedback Map

Resolve Feedback Map to
UINT8 format

Shade Texels if location
touched in feedback Map

Render Scene sampling textures
using same UVs used in Sampler

feedback pass

▪ D3D12_RESOLVE_MODE

DECODE_SAMPLER_FEEDBACK

Resolve
SubResource

▪ Check against
SRV Decode
value 0xff

Agenda

Overview

Texture Space Shading

UL 3DMark* Sampler Feedback Feature Test

Mip Region Size

Conclusion & Call to Action

References

UL 3DMark* Sampler Feedback Feature Test

Feature test
designed to
benchmark
sampler
feedback
performance

▪ Sampler Feedback

▪ Software emulated sampler
feedback

UL 3DMark* Sampler Feedback Feature Test

Implements 2
modes:

▪ 23% net workload benefit
using Sampler Feedback

▪ Sampler Feedback pass 3.1x
faster than emulated path

Intel Gen 11
results:

Workload Design

Sampler Feedback using
“Deferred” Approach

Collect final
Uvs

gradients

Engage
Sampler

Feedback

Resolve
Sampler

Feedback

Compact
Resolved
Sampler

Feedback

Shade Texels
in Texture

Space
Render
output

Resource
Initialization

Create Sampler Feedback Resource

▪ Dxgi_format_sampler_feedback_mip_region_used_opaque

▪ Mip Region Size 8 x 8 x 1

▪ Mip Count 5

Create Paired Resource

Create Feedback View

▪ CreateSamplerFeedbackUnorderedAccessView

▪ Maps to FeedbackTexture2D in HLSL

Collect Final UVs and Gradients

Rasterize all scene geometry

Depth test enabled

Depth write enabled

Write UV to render target

Write Gradient ddx(UV), ddy(UV) to
render target

Engage Sampler Feedback

Full screen
pixel shader
pass

Load UVs
and
gradients

Call Write
Sampler
Feedback
Grad with
inputs

▪ Store results to
FeedbackTexture2D
object

Performance tip: Application can stochastically skip WriteSamplerFeedbackGrad calls.

*Ensure proper image quality when trying this

Resolve Sampler Feedback

Call ResolveSubResourceRegion with
D3D12_RESOLVE_MODE_DECODE_SAMPLER_FEEDBACK

After resolve, touched feedback texels will
have 0xFF

Images on right visualize mips touched

Performance tip:

▪ Batch barriers for transitions to/from resolve states

▪ Resolve entire mip chain in one ResolveSubResourceRegion
call with sub resource index UINT_MAX

Compaction

Goal: Only dispatch compute shader threads
for regions that need to get texel shaded

Build data for Execute Indirect:
▪ Thread group count

▪ Pixel XY offset per thead group

Texture Space Shading

Perform shading for all touched texels in
feedback map

Implemented using ExecuteIndirect

Performance tip:
Use results from higher level mips if available to
save costly lighting calculations

Render Final Output

Full screen pixel shader pass

Sample shaded texels

Use SampleGrad with same
parameters as Sampler Feedback pass

Tone map

Feature Test
coming Q3’ 2021

Special thanks to
our partners @ UL
for developing this
workload!

Visit https://benchmarks.ul.com/3dmark for more information!

* other names and brands may be claimed as the property of others

https://benchmarks.ul.com/3dmark

Agenda

Overview

Texture Space Shading

3DMark* Sampler Feedback Feature Test

Mip Region Size

Conclusion & Call to Action

References

Mip Region Size

Mip Region Size will map a texel in the
feedback map to a region in the paired
texture

Smaller Mip Region will result in a larger
feedback resource. Which will have:

▪ Higher cost for clears

▪ Higher cost for resolves

▪ Higher bandwidth cost

▪ Potentially less shaded texels

Different Mip Region sizes will change
the performance

Smaller Mip Region results in finer
granularity of a mip region used.

Example Data to follow!

Mip Region Example

Feedback Resource
Mip Region 4x4x1

Feedback Resource
Mip Region 8x8x1

Feedback Resource
Mip Region 16x16x1

Paired shaded Resource

0.07

0.69 0.51

8.72

0.05 0.19 0.14

10.38

0.04 0.06 0.06

12.82

FEEDBACK CLEAR (MS) COMPACTION (MS) RESOLVE FEEDBACK (MS) TEXTURE SPACE SHADING

(MS)

Mip Region Size Performance Characteristics

mip region 4x4x1 mip region 8x8x1 mip region 16x16x1

A
v

g
m

ill
is

e
c

o
n

d
s

p
e

r
fr

a
m

e

Agenda

Overview

Texture Space Shading

3DMark* Sampler Feedback Feature Test

Mip Region Size

Conclusion & Call to Action

References

We can’t wait to see how innovative
developers will use the feature!

Intel Gen11 processors
support Sampler Feedback

Begin developing with Sampler
Feedback feature today!

Summary &
Call to Action

https://benchmarks.ul.com/3dmark
https://store.steampowered.com/app/223850/3DMark/

https://benchmarks.ul.com/3dmark

Thank You!
Up Next:
Sampler Feedback
Streaming with Microsoft
Direct Storage*

Sampler Feedback
Streaming with
DirectStorage* for
Windows*
Allen Hux, Intel

* other names and brands may be claimed as the property of others

Agenda
Asset Streaming Opportunity

D3D12 Sampler Feedback Background

D3D12 Reserved Resources

Connecting DirectStorage*

Results

Conclusion & Call to Action

References

Asset Streaming Vision

We can draw scenes
using assets that,

together, far exceed
physical memory if we

stream just what’s
needed per frame.

D3D12 Sampler
Feedback

identifies what to
stream

DirectStorage*
for Windows

makes streaming
simple and

efficient

Build Previously Impossible Scenes

1000 objects

350MB texture for each (16k x 16k bc7)

no texture re-use

350 GB : total memory for assets

230 MB : physical memory used

0.06% resident (230MB/350GB)

Textures courtesy Hubble

https://hubblesite.org/copyright
https://esahubble.org/images/

Agenda
Asset Streaming Opportunity

D3D12 Sampler Feedback Background

D3D12 Reserved Resources

Connecting DirectStorage*

Results

Conclusion & Call to Action

References

D3D12 Reserved Resources

Easy memory
management for
massive assets

ID3D12Device::CreateReservedResource

https://docs.microsoft.com/en-us/windows/win32/api/d3d12/nf-d3d12-id3d12device-createreservedresource

Example: Texture on Terrain

Example of a
reserved resource

This texture is only
partially loaded

Example: Texture on Terrain

Now showing
the mips

No tiles of mip
0 loaded

mip 1 partially
loaded

Example: Texture on Terrain

Set color = mip
level

Can more clearly see how
tiles correspond to the
visible texture

In demo, all tiles (for
350GB or assets) fit within
a single 1GB heap

Agenda
Asset Streaming Opportunity

D3D12 Sampler Feedback Background

D3D12 Reserved Resources

Connecting DirectStorage*

Results

Conclusion & Call to Action

References

D3D12 Sampler Feedback Background

What is feedback? Sampler feedback
resources are

lower-resolution

Finest
Granularity is

4x4
▪ The reverse of texture sampling:

which texels were read?

▪ Efficiently determine what the
hardware did

Two Kinds of Feedback

Mip Region Used
▪ multiple mip layers

▪ texel value = 0xff if any texel sampled

▪ good for texture space shading

0 1 2 3 4 5

Two Kinds of Feedback

Mip Region Used
▪ multiple mip layers

▪ texel value = 0xff if any texel sampled

▪ good for texture space shading

0 1 2 3 4 5

Min Mip Feedback
▪ single-layer

▪ texel value = min mip sampled

Min Mip Feedback Example

▪ Consider a 4x4 min-mip map, region size 4x4

▪ Sample the top left texel of mip 0 (orange)

mip 0 mip 1 mip 2 & 3

0 FF

FFFF

Feedback

Min Mip Map

▪ Feedback answers
the question: was it
sampled?

▪ Min mip map answers
the question: is it
resident?

▪ Idea: if we load
everything at & below
region, no artifacts

e.g. if mip 1 was
sampled,
trilinear/aniso will also
sample layer 2

A min mip map can
be created from min
mip feedback

Example: Building a Min Mip Map

Sampler read
orange region

Conforming
texture must
contain these
regions

Min Mip Feedback

Min Mip Map

0 3

33

0 FF

FFFF

Sampler Feedback + Reserved Resources

Set Sampler Feedback region
size to reserved resource tile size

▪ e.g. 256 x 256 for BC7

Sampler Feedback min mip map
tells you which tiles to load

▪ e.g. all tiles at and below mip 3 in
a particular region

Sampler Feedback Resource is
very small:
4KB for 16kx16k BC7

Color = mip level. For some resources, not all tiles of each mip layer are are loaded.

Sampler Feedback Avoids Artifacts
No cracks/seams between tiles at different mip levels

Sampler Feedback Enables Aggressive Memory
Management

Tile resolution drops with
distance

Tiles outside of view can be
evicted quickly

(blurry area is packed mips)

Agenda
Asset Streaming Opportunity

D3D12 Sampler Feedback Background

D3D12 Reserved Resources

Connecting DirectStorage*

Results

Conclusion & Call to Action

References

File Streaming Background

▪ Sampler Feedback: what to load

▪ Reserved Resources: where they are loaded

How do we load the tiles?

Make Your Assets Streaming Friendly

Tile texture
assets
▪ Want: single 64KB

contiguous file reads

▪ DDS Textures: 64 reads per
tile! (each row of BCn is 4
high)

Most disks do well
with contiguous
reads

Sparse reads of
64KB chunks
achieve high
throughput

File Streaming (for DX) is Hard

Traditionally a lot of
bookkeeping

▪ event handles, upload buffers,
copy queue, command lists,
command allocators

▪ may have a dedicated thread
to poll event handles & create
copy commands

DirectX interaction is
complex

▪ must manage upload
resources (e.g one large shared
or many small upload buffers)

▪ minimize time from start of file
load to signal of DX fence

Difficult to implement
with high performance

▪ Want: Low Latency, Maximum
Bandwidth, Minimal CPU
Overhead

▪ Especially critical for
streaming applications –
cannot have multi-frame delay

Streaming with DirectStorage* for Windows

DirectStorage =
file loading that
speaks DirectX

▪ Can synchronize
with familiar DirectX
fence objects

Replaced
hundreds of
lines of file
upload code

Faster and
lower CPU
overhead

▪ fewer kernel
transitions, etc.

▪ fewer kernel
transitions, etc.

Easily load from
disk or memory
to regions, tiles,
or mips

▪ trivial to upload from
tiled asset files

Streaming with DirectStorage* for Windows

DirectStorage =
file loading that
speaks DirectX

▪ Can synchronize
with familiar D3D12
fence objects

Replaced
hundreds of
lines of file
upload code

Faster and
lower CPU
overhead
▪ fewer kernel

transitions, etc.

Easily load from
SSD or memory
to regions, tiles,
or mips

DirectStorage replaced hundreds of lines code
plus 1 dedicated CPU thread

* other names and brands may be claimed as the property of others

We have been collaborating closely with Intel
on DirectStorage for Windows, and are really
excited about new experiences developers will
be able to unlock with it

- Damyan Pepper, Development Lead (DirectStorage for Windows*), Microsoft

Agenda
Asset Streaming Opportunity

D3D12 Sampler Feedback Background

D3D12 Reserved Resources

Connecting DirectStorage*

Results

Conclusion & Call to Action

References

Stream Many (Very) Large Assets

For this scene:

▪ ~50MB/s
<250MB physical memory

Agenda
Asset Streaming Opportunity

D3D12 Sampler Feedback Background

D3D12 Reserved Resources

Connecting DirectStorage*

Results

Conclusion & Call to Action

References

Summary /
Call to Action

Intel® Iris® Xe
Graphics and future
Intel dGPUs support
Sampler Feedback

Begin developing with Sampler Feedback today!

Intel systems will
support
DirectStorage*
when available

References

Microsoft® Sampler Feedback Specification

DirectStorage is Coming to PC

Sample Source Code

Hubble Images

https://microsoft.github.io/DirectX-Specs/d3d/SamplerFeedback.html
https://devblogs.microsoft.com/directx/directstorage-is-coming-to-pc/
https://github.com/GameTechDev/SamplerFeedbackStreaming
https://esahubble.org/images/

Legal Notices and Disclaimers

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of
performance, course of dealing, or usage in trade.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any
patent claim thereafter drafted which includes subject matter disclosed herein.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata are available on request.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be
absolutely secure. Check with your system manufacturer or retailer or learn more at [intel.com].

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may
affect your actual performance.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates.

Your costs and results may vary.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3
instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this
product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

* other names and brands may be claimed as the property of others

http://www.intel.com/benchmarks

