
Recurrent Neural Networks



Feed-Forward Neural Networks

● Hierarchy of neurons

● Input layer, hidden layers, output layer

● Does not have a memory

● Independent of last decision



  

Recurrent Neural Networks
A Recurrent Neural Network (RNN) learns temporal 

correlations between arbitrarily distant events

RNNs Regress, classify, predict and generate sequential 
data in almost all machine learning domains

.....
... ..



Recurrent Neural Networks

● Memory through recurrent connections

● Feedback information from last steps

● Loops in the network

Recurrent connection



A Different Perspective

● RNN can be seen as multiple ANN communicating

● Message sent between them

● Ideal for sequence learning (text, music, video)

● Time-series prediction
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Backpropagation through Time

● The same as BP

● Use unfolded network

● Define maximum sequence length

t



Backpropagation through Time

● The same as BP

● Use unfolded network

● Define maximum sequence length



Backpropagation through Time (BBTT)

● Error function



  

Simple RNNs Revisited

.....
... ..

Hidden layer to 
hidden layer 
connections 
allow temporal 
information to 
flow through the 
RNN



  

BPTT Chain Rule

The following term gives the relation of error through time where k < t

Immediate partial 
derivative

Partial derivative of 
loss with respect to 
output



  

Vanishing and Exploding Gradients

Significant problem for learning long term dependencies

Recurrent Weight Matrix 
Contribution

If the Eigen values of the recurrent 
weight matrix deviate below one, the 

contribution of “distant” events quickly 
converges to zero



  

Vanishing and Exploding Gradients

This problem occurs when the norm of the gradients during training vanish or 
explode

Activation Function
Contribution

If the gradient of the activation 
function deviates considerably from 
one, the product above explodes or 

vanishes as k << t



  

Sequence MNIST Benchmark
● Goal:

- Classify handwritten digits by reading one pixel at a time

- Proposed as benchmark RNN dataset by Le, Jaitly and Hinton

● Input tensor shape

● (batch, pixel)

● Output tensor shape

● (batch, one_hot_sz)

● Sequence length

● 784 – pixels in 1 image

● Cross entropy loss 

 

[Source] http://yann.lecun.com/exdb/mnist/      

http://yann.lecun.com/exdb/mnist/


  

PyTorch Dataset Class SeqMNIST
import torch
from torch.utils.data import Dataset

class SequentialMNIST(Dataset):

    def __init__(self, mode=MODE_TRAIN, pixel_wise=True, permute=False):
        #Initialize dataset here

    #Set the mode depending on train test or val
    def train(self):
        #self.mode = SequentialMNIST.MODE_TRAIN
    def val(self):
        #self.mode = SequentialMNIST.MODE_VAL
    def test(self):
        #self.mode = SequentialMNIST.MODE_TEST

    def __len__(self):
       #Return size of dataset for train, test, or val
    def __getitem__(self, i):
       #Depending on the mode – train, val test 

return batch_of_elements        



  

Training Script Continued
def run_sequence(seq, target):
    predicted_list = []
    y_list = []
    
    #Initialize memory states
    model.reset(batch_size=seq.size(0), cuda=args.cuda)

    #Execute inference on the model sequentially
    for i, input_t in enumerate(seq.chunk(seq.size(1), dim=1)):
        input_t = input_t.squeeze(1)
        
        p = model(input_t)
        
        predicted_list.append(p)
        y_list.append(target)

    #Return predicted values as well as their corresponding targets
    return predicted_list, y_list 
        



  

Training Script SeqMNIST

 

def train(epoch, model, dset):
    model.train()
    dset.train()
    #total_loss = 0.0, steps=0, n_correct=0, n_possible=0
    
    for batch_idx, (data, target) in enumerate(data_loader):
        if args.cuda:
            data, target = data.cuda().double(), target.cuda().double()
        data, target = Variable(data), Variable(target)

        predicted_list, y_list = run_sequence(data, target) #Defined on next slide

        pred = predicted_list[-1] #Take the final output from the RNN
        y_ = y_list[-1].long() #Take the final batch of targets

        prediction = pred.data.max(1, keepdim=True)[1].long()
        n_correct += prediction.eq(y_.data.view_as(prediction)).sum().cpu().numpy()
        n_possible += int(prediction.shape[0])

        loss = F.nll_loss(pred, y_) #Calculate batch loss

        loss.backward() #Calculate gradients
        optimizer.step() #Update NN weights
        



  

Training Script Continued
def run_sequence(seq, target):
    predicted_list = []
    y_list = []
    
    #Initialize memory states
    model.reset(batch_size=seq.size(0), cuda=args.cuda)

    #Execute inference on the model sequentially
    for i, input_t in enumerate(seq.chunk(seq.size(1), dim=1)):
        input_t = input_t.squeeze(1)
        
        p = model(input_t)
        
        predicted_list.append(p)
        y_list.append(target)

    #Return predicted values as well as their corresponding targets
    return predicted_list, y_list 
        



  

Modern Solutions – Architecture
Modern RNN architectures have been proposed to address the 
vanishing and exploding gradient problem

Model Description Reference

LSTM Most ubiquitous RNN architecture today. Adds gated 
computations and cell memory state for long term memory.

http://www.bioinf.jku
.at/publications/olde
r/2604.pdf

LSTM
Forget Gates

Adds new gate to LSTM architecture that focuses on “forgetting” 
long-term dependencies that are no longer relevant.

https://pdfs.seman
ticscholar.org/115
4/0131eae85b2e11d5
3df7f1360eeb6476e7
f4.pdf

Peephole 
LSTM

Uses previous cell state for gate computations instead of hidden 
state; accesses constant error carousel.

ftp://ftp.idsia.ch/
pub/juergen/TimeCou
nt-IJCNN2000.pdf

GRU Combines input and forget gates into single update gate and 
combines the cell and hidden memory states.

https://arxiv.org/pd
f/1406.1078v3.pdf

IndRNN Forces the recurrent weight matrix to be a vector that is multiplied 
element-wise by the previous hidden state.

https://arxiv.org/pd
f/1803.04831.pdf

UGRNN
RNN+

Modern architectures made to enhance trainability of deeply-
stacked (RNN+) and shallow (UGRNN) models.

https://arxiv.org/pd
f/1611.09913.pdf

http://www.bioinf.jku.at/publications/older/2604.pdf
http://www.bioinf.jku.at/publications/older/2604.pdf
http://www.bioinf.jku.at/publications/older/2604.pdf
https://pdfs.semanticscholar.org/1154/0131eae85b2e11d53df7f1360eeb6476e7f4.pdf
https://pdfs.semanticscholar.org/1154/0131eae85b2e11d53df7f1360eeb6476e7f4.pdf
https://pdfs.semanticscholar.org/1154/0131eae85b2e11d53df7f1360eeb6476e7f4.pdf
https://pdfs.semanticscholar.org/1154/0131eae85b2e11d53df7f1360eeb6476e7f4.pdf
https://pdfs.semanticscholar.org/1154/0131eae85b2e11d53df7f1360eeb6476e7f4.pdf
ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf
ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf
ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf
https://arxiv.org/pdf/1406.1078v3.pdf
https://arxiv.org/pdf/1406.1078v3.pdf
https://arxiv.org/pdf/1803.04831.pdf
https://arxiv.org/pdf/1803.04831.pdf
https://arxiv.org/pdf/1611.09913.pdf
https://arxiv.org/pdf/1611.09913.pdf


  

Modern Solutions: Initialization

Eigenvalues of the recurrent weight matrix need to be equal to one in 
order to avoid the vanishing and exploding gradient problem

Both of these matrices have Eigenvalues equal to one

In practice, soft constraints imposed on these matrices after 
initialization improves trainability of RNNs

Identity Initialization Orthogonal Initialization



  

Modern Solutions: Activations

The derivative of the activation function is part of 
the product that causes the temporal gradient to 
vanish or explode 

Sigmoid Activation

Max value of df/dx is .25

Temporal gradient vanishes 
quickly with this activation 
function 



  

Modern Solutions: Activations
Tanh Activation ReLu Activation

ReLu activation has desirable gradient 
behavior for values of x > 0

For x < 0 the temporal gradient does 
not exist

Heavily used in modern gated 
recurrent architectures
 
The gradient vanishes more quickly 
the further x deviates from 0



  

Custom RNN Cell Template PyTorch
class CustomRNNCell(nn.Module):
    def __init__(self, input_size,
                    # Define custom variables of interest - dropout ect
                    hidden_size):
        super(CustomRNNCell, self).__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size

        #Initialize global variables
        #Initialize parameters W, U, b ect.

        self.hidden_state = None

    def reset(self, batch_size=1, cuda=True):
        #Initialize Memory States h_t, c_t ect.

    def forward(self, X_t):
        h_t_previous = self.hidden_state #extract memory states (h_t-1, c_t-1)
        #Do computation here
        #Set memory states
        self.hidden_state = y
        return y



  

IRNN in PyTorch

def forward(self, X_t):
        h_t_previous = self.hidden_state

        out = F.relu( torch.mm(X_t, self.W_x) +
            torch.mm(h_t_previous, self.U_h) + 
self.b)

        self.hidden_state = out
        return out

self.W_x = nn.Parameter(torch.zeros(input_size, hidden_size))
self.W_x = nn.init.xavier_normal_(self.W_x)

#Identity recurrent weight matrix initialization
self.U_h = torch.nn.Parameter(torch.eye(hidden_size)) 

self.b = nn.Parameter(torch.zeros(hidden_size))

Identity matrix 
initialization

F.relu – Rectified 
linear unit activation 
function



  

LSTM & Peephole Connections
def forward(self, X_t):
        h_t_previous, c_t_previous = self.states

        f_t = F.sigmoid(
            torch.mm(X_t, self.W_f) + torch.mm(h_t_previous, self.U_f) + self.b_f)

        i_t = F.sigmoid(
            torch.mm(X_t, self.W_i) + torch.mm(h_t_previous, self.U_i) + self.b_i)

        o_t = F.sigmoid(
            torch.mm(X_t, self.W_o) + torch.mm(h_t_previous, self.U_o) + self.b_o)

        c_hat_t = F.tanh(
            torch.mm(X_t, self.W_c) + torch.mm(h_t_previous, self.U_c) + self.b_c)
        

c_t = (f_t * c_t_previous) + (i_t * c_hat_t)

        h_t = o_t * F.tanh(c_t)

        self.states = (h_t, c_t)
        return h_t

Replace h_t_previous with 
c_t_previous for Peephole LSTM 
variant



  

GRU
def forward(self, X_t):

        h_t_previous = self.recurrent_state

        z_t = F.sigmoid(
            torch.mm(X_t, self.W_z) + torch.mm(h_t_previous, self.U_z) + self.b_z)

        r_t = F.sigmoid(
            torch.mm(X_t, self.W_r) + torch.mm(h_t_previous, self.U_r) + self.b_r)

        h_t = z_t * h_t_previous + ((z_t - 1) * -1) * F.tanh(
            torch.mm(X_t, self.W_h) + torch.mm((r_t * h_t_previous), self.U_h) + self.b_h)

        self.recurrent_state = h_t

        return h_t



  

UGRNN
def forward(self, X_t):
        h_t_previous=self.states

        g_t = F.sigmoid(
            torch.mm(X_t, self.W_g) + torch.mm(h_t_previous, self.U_g) + self.b_g)

        c_t = F.tanh(
            torch.mm(X_t, self.W_c) + torch.mm(h_t_previous, self.U_c) + self.b_c)

        h_t = g_t * h_t_previous + ((g_t - 1) * -1) * c_t

        self.states = h_t
        return h_t



  

Intersection RNN
def forward(self, X_t):

        h_t_previous = self.states

        y_in = F.tanh(
            torch.mm(X_t, self.W_yin) + torch.mm(h_t_previous, self.U_yin) + self.b_yin)

        h_in = F.tanh(
            torch.mm(X_t, self.W_hin) + torch.mm(h_t_previous, self.U_hin) + self.b_hin)

        g_y = F.sigmoid(
            torch.mm(X_t, self.W_gy) + torch.mm(h_t_previous, self.U_gy) + self.b_gy)

        g_h = F.sigmoid(
            torch.mm(X_t, self.W_gh) + torch.mm(h_t_previous, self.U_gh) + self.b_gh)

        y_t = g_y * X_t + ((g_y - 1) * -1) * y_in

        h_t = g_h * h_t_previous + ((g_h - 1) *-1) * h_in

        self.states = h_t
        return y_t



  

Exercise: RNN ZOO
Test novel RNN architectures on famous benchmark tasks 
Sequential MNIST and Permuted Sequential MNIST. Partial code 
is provided.

python train.py --hx=50 --layers=2 –model-type=lstm

run “python train.py --help” for description of hyperparameters

Students Task:

● Define weight matrix and recurrent weight matrix for vanilla 
RNN. See models/rnn.py

● Define LSTM forward method (LSTM secret sauce). 

See models/lstm.py

● Define how to reset recurrent states for GRU.

See models/gru.py



  

Sequence MNIST
● Goal 

Classify handwritten digits by reading one pixel at a time

Proposed as benchmark RNN dataset by Le, Jaitly and Hinton

● Input tensor shape:

(batch, pixel)

● Output tensor shape:

(batch, one_hot_sz)

● Sequence length:

784 – pixels in 1 image

● Cross entropy loss 

 



  

Convolutional RNNs

Learns spatio-temporal correlations

.....
... ..

X is a set of activation 
maps

X is commonly an RGB 
or RGBD image

H is a set of activation 
maps 

H depends on multiple 
factors, including the 
number of filters in the 
hidden layer, stride, 
padding, ect.



  

Convolutional RNNs

Feature extraction no longer occurs by fully connecting 
the input with its respective weight matrix; features 
are now extracted through convolutional layers

 

Be careful! Convolving H and U needs to produce the same 
shape tensor as convolving W and X

For recurrent convolutional layer

Set stride equal to one

Make the number of filters in U equal to the number of 
filters in W

Set proper padding – assuming stride of one



  

Dodge Ball

Can a robot dodge balls 
with a RGB video sensor?

Goal:

Successfully predict 
future collisions given a 
randomly initialized 
projectile 

Solution:

Convolutional RNN that 
learns the mapping 
between video input and 
probability of collision 



  

Dodge Ball



  

Dodge Ball from Robot Perspective



  

Visualize Hidden Activation
Maps in ConvLSTM



  

Visualize Cell State Activation 
Maps in ConvLSTM



  

RNNs and Robotics

Goal

Utilize slip for dexterous in-hand 
manipulation of grasped objects

Solution

Predictive RNN model that 
estimates future poses of grasped 
object from past experiences

 

Static tactile 
data (s)

Dynamic tactile 
data (d)

Predicted future 
poses for the 
next 20 time-
steps

Ground truth 
captured by 
accelerometer[Source] https://simonstepputtis.com/static/paper/icra2018.pdf

https://simonstepputtis.com/static/paper/icra2018.pdf


  

RNNs and Robotics

Play Video

https://www.youtube.com/watch?v=pkZohcmZFT8&t=2s


Summary

● We introduced recurrent networks

● Most widely used are LSTMs and GRUs

● Critical for tasks that require memory

● Robot may take past states into account during 
decision-making

● ConvolutionalLSTMs can be used to extract visual 
features and track them over time
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