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I. THE HIBENCH SUITE 

MapReduce and its popular open source implementation, 

Hadoop, are moving toward ubiquitous for Big Data storage 

and processing. Therefore, it is essential to quantitatively 

evaluate and characterize the Hadoop deployment through 

extensive benchmarking. In this paper, we present HiBench 

[1], a representative and comprehensive benchmark suite for 

Hadoop, which consists of a set of Hadoop programs 

including both synthetic micro-benchmarks and real-world 

applications. Currently the benchmark suite contains ten 

workloads, classified into four categories, as shown in Table I.  

 

A. Micro Benchmarks 

The Sort, WordCount and TeraSort programs contained in 

the Hadoop distribution are three popular micro-benchmarks 

widely used in the community, and therefore are included in 

HiBench. Both the Sort and WordCount programs are 

representative of a large subset of real-world MapReduce jobs 

– one transforming data from one representation to another, 

and another extracting a small amount of interesting data from 

a large data set.  

In HiBench, the input data of Sort and WordCount 

workloads are generated using the RandomTextWriter 

program contained in the Hadoop distribution. The TeraSort 

workload sorts 10 billion 100-byte records generated by the 

TeraGen program contained in the Hadoop distribution. 

We have also extended the DFSIO program contained in 

the Hadoop distribution to evaluate the aggregated bandwidth 

delivered by HDFS. The original DFSIO program only 

computes the average I/O rate and throughput of each map 

task, and it is not straightforward how to properly sum up the 

I/O rate or throughout if some map tasks are delayed, re-tried 

or speculatively executed by the Hadoop framework. The 

Enhanced DFSIO workload included in HiBench computes 

the aggregated bandwidth by sampling the number of bytes 

read/written at fixed time intervals in each map task; during 

the reduce and post-processing stage, the samples of each map 

task are linear interpolated and re-sampled at a fixed plot rate, 

so as to compute the aggregated read/write throughput by all 

the map tasks [1]. 

B. Web Search 

The Nutch Indexing and Page Rank workloads are included 

in HiBench, because they are representative of one of the most 

significant uses of MapReduce (i.e., large-scale search 

indexing systems).  

The Nutch Indexing workload is the indexing sub-system of 

Nutch [2], a popular open-source (Apache) search engine; we 

have used the crawler sub-system in Nutch to crawl an in-

house Wikipedia mirror and generated about 2.4 million web 

pages as the input of this workload. The Page Rank workload 

The Page Rank workload is an open source implementation of 

the page-rank algorithm in Mahout [4] (an open-source 

machine learning library built on top of Hadoop); it is an open 

source implementation of the page-rank algorithm, a link 

analysis algorithm used widely in web search engines.  

C. Machine Learning 

The Bayesian Classification and K-means Clustering 

implementations contained in Mahout are included in 

HiBench, because they are representative of one of another 

important uses of MapReduce (i.e., large-scale machine 

learning). 

The Bayesian Classification workload implements the 

trainer part of Naive Bayesian (a popular classification 

algorithm for knowledge discovery and data mining). The 

input of this benchmark is extracted from a subset of the 

Wikipedia dump. The Wikipedia dump file is first split using 

the built-in WikipediaXmlSplitter in Mahout, and then 

prepared into text samples using the built-in 

WikipediaDatasetCreator in Mahout. The text samples are 

finally distributed into several files as the input of the 

benchmark. 

The K-means Clustering workload implements K-means (a 

well-known clustering algorithm for knowledge discovery and 

data mining). Its input is a set of samples, and each sample is 

represented as a numerical d-dimensional vector. We have 

developed a random data generator using statistic distributions 

TABLE I 

HIBENCH WORKLOADS 

Category Workload 

Micro Benchmarks  Sort 

 WordCount 

 TeraSort  

 EnhancedDFSIO 

Web Search Nutch Indexing 

 Page Rank 

Machine Learning Bayesian Classification 

 K-means Clustering 

Analytical Query Hive Join 
 Hive Aggregation 

 



to generate the workload input. 

D. Analytic Query 

The Join and Aggregation queries in the Hive performance 

benchmarks [5] are included in HiBench, because they are 

representative of another one of the most significant uses of 

MapReduce (i.e., OLAP-style analytical queries). 

Both Hive Join and Aggregation queries are adapted from 

the query examples in Pavlo et. al [6] and their inputs are 

defined in [6]. They are intended to model complex analytic 

queries over structured (relational) tables – Hive Aggregation 

computes the sum of each group over a single read-only table, 

while Hive Join computes the both the average and sum for 

each group by joining two different tables.  

E. Data Compression 

Data compression is aggressively used in real-world 

Hadoop deployments, so as to minimize the space used to 

storing the data, and to reduce the disk and network I/O in 

running MapReduce jobs. Therefore, each workload in 

HiBench (except for Enhance DFSIO) can be configured to 

run with compression turned on or off – when compression is 

enabled, both the input and output of the workload will be 

compressed (using a user specified codec), so as to evaluate 

the Hadoop performance with intensive data compressions. 

II. DISCUSSION AND FUTURE WORK 

Benchmarking is the quantitative foundation of any 

computer system research. In this section, we discuss the 

tradeoffs of existing approaches to Hadoop benchmarking, as 

well as possible improvements for HiBench in the future. 

Existing Hadoop benchmark programs can be roughly 

categorized into two classes – micro-benchmarks (such as 

sorting programs) and synthetic workloads (such as Gridmix3 

[7] and SWIM [8]). Micro-Benchmarks are important 

elements for evaluating Hadoop performance. In particular, 

the sorting program has been pervasively accepted as an 

important performance indicator of MapReduce, because 

sorting is an intrinsic behavior of the MapReduce framework. 

For instance, both Yahoo and Google have used TeraSort to 

evaluate their MapReduce cluster [9][10]. Therefore, they are 

included in HiBench, even though they are just micro level 

benchmarks and do not exhibit some important characteristics 

of real world Hadoop applications.  

Synthetic workloads (such as GridMix3 and SWIM) intend 

to model the characteristics of a Hadoop cluster by collecting 

traces of all the jobs in the cluster over an extended period of 

time, synthesizing the workload based on the traces, and 

executing the workloads via replaying the synthesized traces. 

In this manner, they can potentially evaluate the effects of the 

interactions of concurrent Hadoop jobs, which is impossible if 

just a single Hadoop job is executed from start to end. On the 

other hand, synthetic workloads are as good as their models, 

and it is unclear how representative their models are of the 

behaviors of Hadoop clusters. For instance, GridMix3 and 

SWIM only models the data read/written by each map or 

reduce task, while completely ignores the computing 

characteristics of these tasks. Even though there are some 

efforts on adding compute models to GridMix3 [11], only 

simple instructions such as ADD or SQRT are used to emulate 

the CPU utilizations; consequently, they cannot properly 

evaluate the impacts of, for instance, better compression or 

vector instructions on Hadoop performance. In addition, real 

world Hadoop applications may have data access patterns 

outside the original MapReduce model that is strictly followed 

by these synthetic workloads; for instance, Nutch Indexing 

needs to read/write a lot of temporary files on local disks in its 

reduce tasks, which cannot be replayed by these workloads.  

A lot of users (both inside and outside of Intel) have used 

HiBench extensively for their Hadoop evaluation and tuning. 

We have focused on providing real-world applications for 

Hadoop benchmarking in HiBench; consequently, these users 

can clearly articulate the behaviors and characteristics of 

specific Hadoop applications in their work. In future, we 

would like to explore several improvements to HiBench based 

on the user feedbacks, including broader coverage of Hadoop 

applications, better support of scale-up and scale-down of 

cluster sizes, and evaluations of the interactions of concurrent 

Hadoop jobs. 
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