
HiBench: A Representative and Comprehensive

Hadoop Benchmark Suite
Shengsheng Huang, Jie Huang, Yan Liu, Lan Yi and Jinquan Dai

 Intel Asia-Pacific Research and Development Ltd., Shanghai, P.R.China, 200241

{shengsheng.huang, jie.huang, yan.b.liu, lan.yi, jason.dai}@intel.com

I. THE HIBENCH SUITE

MapReduce and its popular open source implementation,

Hadoop, are moving toward ubiquitous for Big Data storage

and processing. Therefore, it is essential to quantitatively

evaluate and characterize the Hadoop deployment through

extensive benchmarking. In this paper, we present HiBench

[1], a representative and comprehensive benchmark suite for

Hadoop, which consists of a set of Hadoop programs

including both synthetic micro-benchmarks and real-world

applications. Currently the benchmark suite contains ten

workloads, classified into four categories, as shown in Table I.

A. Micro Benchmarks

The Sort, WordCount and TeraSort programs contained in

the Hadoop distribution are three popular micro-benchmarks

widely used in the community, and therefore are included in

HiBench. Both the Sort and WordCount programs are

representative of a large subset of real-world MapReduce jobs

– one transforming data from one representation to another,

and another extracting a small amount of interesting data from

a large data set.

In HiBench, the input data of Sort and WordCount

workloads are generated using the RandomTextWriter

program contained in the Hadoop distribution. The TeraSort

workload sorts 10 billion 100-byte records generated by the

TeraGen program contained in the Hadoop distribution.

We have also extended the DFSIO program contained in

the Hadoop distribution to evaluate the aggregated bandwidth

delivered by HDFS. The original DFSIO program only

computes the average I/O rate and throughput of each map

task, and it is not straightforward how to properly sum up the

I/O rate or throughout if some map tasks are delayed, re-tried

or speculatively executed by the Hadoop framework. The

Enhanced DFSIO workload included in HiBench computes

the aggregated bandwidth by sampling the number of bytes

read/written at fixed time intervals in each map task; during

the reduce and post-processing stage, the samples of each map

task are linear interpolated and re-sampled at a fixed plot rate,

so as to compute the aggregated read/write throughput by all

the map tasks [1].

B. Web Search

The Nutch Indexing and Page Rank workloads are included

in HiBench, because they are representative of one of the most

significant uses of MapReduce (i.e., large-scale search

indexing systems).

The Nutch Indexing workload is the indexing sub-system of

Nutch [2], a popular open-source (Apache) search engine; we

have used the crawler sub-system in Nutch to crawl an in-

house Wikipedia mirror and generated about 2.4 million web

pages as the input of this workload. The Page Rank workload

The Page Rank workload is an open source implementation of

the page-rank algorithm in Mahout [4] (an open-source

machine learning library built on top of Hadoop); it is an open

source implementation of the page-rank algorithm, a link

analysis algorithm used widely in web search engines.

C. Machine Learning

The Bayesian Classification and K-means Clustering

implementations contained in Mahout are included in

HiBench, because they are representative of one of another

important uses of MapReduce (i.e., large-scale machine

learning).

The Bayesian Classification workload implements the

trainer part of Naive Bayesian (a popular classification

algorithm for knowledge discovery and data mining). The

input of this benchmark is extracted from a subset of the

Wikipedia dump. The Wikipedia dump file is first split using

the built-in WikipediaXmlSplitter in Mahout, and then

prepared into text samples using the built-in

WikipediaDatasetCreator in Mahout. The text samples are

finally distributed into several files as the input of the

benchmark.

The K-means Clustering workload implements K-means (a

well-known clustering algorithm for knowledge discovery and

data mining). Its input is a set of samples, and each sample is

represented as a numerical d-dimensional vector. We have

developed a random data generator using statistic distributions

TABLE I

HIBENCH WORKLOADS

Category Workload

Micro Benchmarks Sort

 WordCount

 TeraSort

 EnhancedDFSIO

Web Search Nutch Indexing

 Page Rank

Machine Learning Bayesian Classification

 K-means Clustering

Analytical Query Hive Join
 Hive Aggregation

to generate the workload input.

D. Analytic Query

The Join and Aggregation queries in the Hive performance

benchmarks [5] are included in HiBench, because they are

representative of another one of the most significant uses of

MapReduce (i.e., OLAP-style analytical queries).

Both Hive Join and Aggregation queries are adapted from

the query examples in Pavlo et. al [6] and their inputs are

defined in [6]. They are intended to model complex analytic

queries over structured (relational) tables – Hive Aggregation

computes the sum of each group over a single read-only table,

while Hive Join computes the both the average and sum for

each group by joining two different tables.

E. Data Compression

Data compression is aggressively used in real-world

Hadoop deployments, so as to minimize the space used to

storing the data, and to reduce the disk and network I/O in

running MapReduce jobs. Therefore, each workload in

HiBench (except for Enhance DFSIO) can be configured to

run with compression turned on or off – when compression is

enabled, both the input and output of the workload will be

compressed (using a user specified codec), so as to evaluate

the Hadoop performance with intensive data compressions.

II. DISCUSSION AND FUTURE WORK

Benchmarking is the quantitative foundation of any

computer system research. In this section, we discuss the

tradeoffs of existing approaches to Hadoop benchmarking, as

well as possible improvements for HiBench in the future.

Existing Hadoop benchmark programs can be roughly

categorized into two classes – micro-benchmarks (such as

sorting programs) and synthetic workloads (such as Gridmix3

[7] and SWIM [8]). Micro-Benchmarks are important

elements for evaluating Hadoop performance. In particular,

the sorting program has been pervasively accepted as an

important performance indicator of MapReduce, because

sorting is an intrinsic behavior of the MapReduce framework.

For instance, both Yahoo and Google have used TeraSort to

evaluate their MapReduce cluster [9][10]. Therefore, they are

included in HiBench, even though they are just micro level

benchmarks and do not exhibit some important characteristics

of real world Hadoop applications.

Synthetic workloads (such as GridMix3 and SWIM) intend

to model the characteristics of a Hadoop cluster by collecting

traces of all the jobs in the cluster over an extended period of

time, synthesizing the workload based on the traces, and

executing the workloads via replaying the synthesized traces.

In this manner, they can potentially evaluate the effects of the

interactions of concurrent Hadoop jobs, which is impossible if

just a single Hadoop job is executed from start to end. On the

other hand, synthetic workloads are as good as their models,

and it is unclear how representative their models are of the

behaviors of Hadoop clusters. For instance, GridMix3 and

SWIM only models the data read/written by each map or

reduce task, while completely ignores the computing

characteristics of these tasks. Even though there are some

efforts on adding compute models to GridMix3 [11], only

simple instructions such as ADD or SQRT are used to emulate

the CPU utilizations; consequently, they cannot properly

evaluate the impacts of, for instance, better compression or

vector instructions on Hadoop performance. In addition, real

world Hadoop applications may have data access patterns

outside the original MapReduce model that is strictly followed

by these synthetic workloads; for instance, Nutch Indexing

needs to read/write a lot of temporary files on local disks in its

reduce tasks, which cannot be replayed by these workloads.

A lot of users (both inside and outside of Intel) have used

HiBench extensively for their Hadoop evaluation and tuning.

We have focused on providing real-world applications for

Hadoop benchmarking in HiBench; consequently, these users

can clearly articulate the behaviors and characteristics of

specific Hadoop applications in their work. In future, we

would like to explore several improvements to HiBench based

on the user feedbacks, including broader coverage of Hadoop

applications, better support of scale-up and scale-down of

cluster sizes, and evaluations of the interactions of concurrent

Hadoop jobs.

REFERENCES

[1] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The HiBench
Benchmark Suite: Characterization of the MapReduce-Based Data

Analysis”, ICDEW, March, 2010.

[2] Nutch homepage. http://lucene.apache.org/nutch/
[3] P. Castagna, “Having fun with PageRank and MapReduce,” Hadoop

User Group UK talk. Available: http://static.last.fm/johan/huguk-

20090414/paolo_castagna-pagerank.pdf
[4] Mahout homepage. http://lucene.apache.org/mahout/

[5] “A Benchmark for Hive, PIG and Hadoop”, http://issues.apache.org/

jira/browse/HIVE-396
[6] A. Pavlo, A. Rasin, S. Madden, M. Stonebraker, D. DeWitt, E. Paulson,

L. Shrinivas, and D. J. Abadi. “A Comparison of Approaches to Large-

Scale Data Analysis”, SIGMOD, June, 2009

[7] GridMix3. http://hadoop.apache.org/mapreduce/docs/current/gridmix.

html

[8] Y. Chen, A. Ganapathi, R. Griffith, R. Katz. “The Case for Evaluating
MapReduce Performance Using Workload Suites”, MASCOTS, 2011.

[9] O. O’Malley and A. C. Murthy, “Winning a 60 Second Dash with a

Yellow Elephant”, http://sortbenchmark.org/Yahoo2009.pdf
[10] “Sorting 1PB with MapReduce”, http://googleblog.blogspot.com/

2008/11/sorting-1pb-with-mapreduce.html

[11] “Emulate CPU Usage of Tasks in GridMix3”. https://issues.apache.org/
jira/browse/MAPREDUCE-2106

