

IntelIntelIntelIntel®®®® Digital Random Number Digital Random Number Digital Random Number Digital Random Number

GeneratGeneratGeneratGeneratorororor (DRNG)(DRNG)(DRNG)(DRNG)
SSSSoftware oftware oftware oftware IIIImplementationmplementationmplementationmplementation GuideGuideGuideGuide

 Revision 1.1

August 7, 2012

Intel DRNG Software Implementation Guide

3

Revision HistoryRevision HistoryRevision HistoryRevision History

Revision Revision History Date

0.1 Beta Release Revision Feb 14, 2011

0.2 Release Revision April 24, 2011

0.3 Release Revision June 9, 2011

1.0 Ivy Bridge Release Revision May 1, 2012

1.1 Replaced Code Samples for _rdrand16_step, _rdrand32_step,
and _rdrand64_step

August 7, 2012

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT
OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR
INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A
SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to change
without notice. Do not finalize a design with this information.

The Intel® Active Management Technology may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel
literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's Web Site.

Intel® Active Management Technology requires the computer system to have an Intel(R) AMT-enabled
chipset, network hardware and software, as well as connection with a power source and a corporate network
connection. Setup requires configuration by the purchaser and may require scripting with the management
console or further integration into existing security frameworks to enable certain functionality. It may also
require modifications of implementation of new business processes. With regard to notebooks, Intel AMT
may not be available or certain capabilities may be limited over a host OS-based VPN or when connecting
wirelessly, on battery power, sleeping, hibernating or powered off. For more information, see
www.intel.com/technology/platform-technology/intel-amt/

Throughout this document Intel ME refers to Intel® Management Engine and Intel® AMT refers to Intel®
Active Management Technology.

Requires a system with a 64-bit enabled processor, chipset, BIOS and software. Performance will vary
depending on the specific hardware and software you use. Consult your PC manufacturer for more
information. For more information, visit http://www.intel.com/info/em64t

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS,
virtual machine monitor (VMM). Functionality, performance or other benefits will vary depending on
hardware and software configurations. Software applications may not be compatible with all operating
systems. Consult your PC manufacturer. For more information, visit http://www.intel.com/go/virtualization

Intel, the Intel logo, Intel® AMT, Intel vPro, Centrino, Centrino Inside, and vPro Inside are trademarks or
registered trademarks of Intel Corporation in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2011 Intel Corporation. All rights reserved.

Intel DRNG Software Implementation Guide

4

ContentsContentsContentsContents

Revision History ..3

1 Introduction ..5

2 RNG Basics and Introduction to the DRNG6

2.1 Random Number Generators (RNGs) .. 6

2.2 Pseudo-Random Number Generators (PRNGs) ... 6

2.3 True Random Number Generators (TRNGs) ... 8

2.4 Cascade Construction RNGs .. 8

2.5 Introducing the Digital Random Number Generator (DRNG) 9

2.6 Applications for the Digital Random Number Generator 10

3 DRNG Overview ... 11

3.1 Processor Chip View ... 11

3.2 Component Architecture ... 12

3.2.1 Entropy Source (ES) ... 12

3.2.2 Conditioner .. 13

3.2.3 Deterministic Random Bit Generator (DRBG) 13

3.3 Robustness and Self-Validation.. 13

3.3.1 Online Health Tests (OHTs) .. 16

3.3.2 Built-In Self Tests (BISTs) ... 16

3.4 RDRAND ... 17

3.5 Performance ... 17

3.6 Power Requirements .. 19

4 RDRAND Instruction Usage ... 20

4.1 Using RDRAND to Obtain Random Values.. 23

4.1.1 Simple RDRAND Invocation .. 24

4.1.2 RDRAND Retry Loop .. 25

4.2 Initializing Data Objects of Arbitrary Size .. 26

4.3 Library API Recommendations ... 29

4.4 Guaranteeing DBRG Reseeding .. 30

5 References .. 33

Figures
Figure 1: Cascade Contruction Random Number Generator .. 9

Figure 2: Digital Random Number Generation Design .. 11

Figure 3: DRNG Component Architecture ... 12

Figure 4: DRNG Self-Validation Components .. 14

Intel DRNG Software Implementation Guide

5

1111 IntroductionIntroductionIntroductionIntroduction

Intel® Secure Key, previously code-named Bull Mountain Technology, is the Intel

name for the Intel® 64 and IA-32 Architectures instruction RDRAND and its underlying

Digital Random Number Generator (DRNG) hardware implementation. Among other

things, the DRNG using the RDRAND instruction is useful for generating high-quality

keys for cryptographic protocols.

This Digital Random Number Generator Software Implementation Guide is intended to

provide a complete source of technical information on RDRAND usage, including code

examples. Included in this document are the following additional sections:

Section 2: Random Number Generator (RNG) Basics and Introduction to the DRNG.

This section describes the nature of an RNG and its pseudo- (PRNG) and true-

(TRNG) implementation variants, including modern cascade construction RNGs.

We then present the DRNG's position within this broader taxonomy.

Section 3: DRNG Overview. In this section, we provide a technical overview of the

DRNG, including its component architecture, robustness features, manner of

access, performance, and power requirements.

Section 4: RDRAND Instruction Usage. This section provides reference information on

the RDRAND instruction and code examples showing its use. This includes

RDRAND platform support verification and suggestions on DRNG-based libraries.

This document is designed to serve a variety of readers. Programmers who already

understand the nature of RNGs may refer directly to section 4 for RDRAND instruction

reference and code examples. RNG newcomers who need some review of concepts to

understand the nature and significance of the DRNG can refer to section 2. Nearly all

users will want to look at section 3 which provides a technical overview of the DRNG.

Intel DRNG Software Implementation Guide

6

2222 RNG BasicsRNG BasicsRNG BasicsRNG Basics and Introducand Introducand Introducand Introduction totion totion totion to thethethethe DRNGDRNGDRNGDRNG

The Digital Random Number Generator, using the RDRAND instruction, is an innovative

hardware approach to high-quality, high-performance entropy and random number

generation. To understand how it differs from existing RNG solutions, we discuss in

this section some of the basic concepts underlying random number generation.

2.12.12.12.1 Random NumbeRandom NumbeRandom NumbeRandom Number Generators (r Generators (r Generators (r Generators (RNGsRNGsRNGsRNGs))))
An RNG is a utility or device of some type that produces a sequence of numbers on an

interval [min, max] such that values appear unpredictable. Stated a little more

technically, we are looking for the following characteristics:

• Each new value must be statistically independent of the previous value. That

is, given a generated sequence of values, a particular value is not more likely

to follow after it as the next value in the RNG's random sequence.

• The overall distribution of numbers chosen from the interval is uniformly

distributed. In other words, all numbers are equally likely and none are more

"popular" or appear more frequently within the RNG’s output than others.

• The sequence is unpredictable. An attacker cannot guess some or all of the

values in a generated sequence. Predictability may take the form of forward

prediction (future values) and backtracking (past values).

Since computing systems are by nature deterministic, producing quality random

numbers that have these properties (statistical independence, uniform distribution,

and unpredictability) is much more difficult than it might seem. Sampling the seconds

value from the system clock, a common approach, may seem random enough, but

process scheduling and other system effects may result in some values occurring far

more frequently than others. External entropy sources like the time between a user's

keystrokes or mouse movements may likewise, upon further analysis, show that

values do not distribute evenly across the space of all possible values; some values are

more likely to occur than others, and certain values almost never occur in practice.

Beyond these requirements, some other desirable RNG properties include:

• The RNG is fast in returning a value (i.e., low response time) and can service

a large number of requests within a short time interval (i.e., highly scalable).

• The RNG is secure against attackers who might observe or change its

underlying state in order to predict or influence its output or otherwise

interfere with its operation.

2.22.22.22.2 PseudoPseudoPseudoPseudo----Random Number Generators (PRNGs)Random Number Generators (PRNGs)Random Number Generators (PRNGs)Random Number Generators (PRNGs)
One widely used approach to achieving good RNG statistical behavior is to leverage

mathematical modeling in the creation of a Pseudo-Random Number Generator. A

PRNG is a deterministic algorithm, typically implemented in software that computes a

sequence of numbers that "look" random. A PRNG requires a seed value that is used to

Intel DRNG Software Implementation Guide

7

initialize the state of the underlying model. Once seeded, it can then generate a

sequence of numbers that exhibit good statistical behavior.

PRNGs exhibit periodicity that depends on the size of its internal state model. That is,

after generating a long sequence of numbers, all variations in internal state will be

exhausted and the sequence of numbers to follow will repeat an earlier sequence. The

best PRNG algorithms available today, however, have a period that is so large this

weakness can practically be ignored. For example, the Mersenne Twister MT19937

PRNG with 32-bit word length has a periodicity of 219937-1.[1]

A key characteristic of all PRNGs is that they are deterministic. That is, given a

particular seed value, the same PRNG will always produce the exact same sequence of

"random" numbers. This is because a PRNG is computing the next value based upon a

specific internal state and a specific, well-defined algorithm. Thus, while a generated

sequence of values exhibit the statistical properties of randomness (independence,

uniform distribution), overall behavior of the PRNG is entirely predictable.

For some contexts, the deterministic nature of PRNGs is an advantage. For example, in

some simulation and experimental contexts, researchers would like to compare the

outcome of different approaches using the same sequence of input data. PRNGs

provide a way to generate a long sequence of random data inputs that are repeatable

by using the same PRNG, seeded with the same value.

In other contexts, however, this determinism is highly undesirable. Consider a server

application that generates random numbers to be used as cryptographic keys in data

exchanges with client applications over secure communication channels. An attacker

who knew the PRNG in use and also knew the seed value (or the algorithm used to

obtain a seed value) would quickly be able to predict each and every key (random

number) as it is generated. Even with a sophisticated and unknown seeding algorithm,

an attacker who knows (or can guess) the PRNG in use can deduce the state of the

PRNG by observing the sequence of output values. After a surprisingly small number of

observations (e.g., 624 for Mersenne Twister MT19937), each and every subsequent

value can be predicted. For this reason, PRNGs are considered to be cryptographically

insecure.

PRNG researchers have worked to solve this problem by creating what are known as

Cryptographically Secure PRNGs (CSPRNGs). Various techniques have been invented in

this domain, for example, applying a cryptographic hash to a sequence of consecutive

integers, using a block cipher to encrypt a sequence of consecutive integers ("counter

mode"), and XORing a stream of PRNG-generated numbers with plaintext ("stream

cipher"). Such approaches improve the problem of inferring a PRNG and its state by

greatly increasing its computational complexity, but the resulting values may or may

not exhibit the correct statistical properties (i.e., independence, uniform distribution)

needed for a robust random number generator. Furthermore, any deterministic

algorithm is subject to discovery by an attacker through a wide variety of means (e.g.,

disassemblers, sophisticated memory attacks, a disgruntled employee). Even more

common, attackers may discover or infer PRNG seeding by narrowing its range of

possible values or snooping memory in some manner. Once the deterministic

algorithm and its seed is known, whatever it is, then the attacker may be able to

predict each and every random number generated, both past and future.

Intel DRNG Software Implementation Guide

8

2.32.32.32.3 True RaTrue RaTrue RaTrue Random Number Generators (TRNGs)ndom Number Generators (TRNGs)ndom Number Generators (TRNGs)ndom Number Generators (TRNGs)
For contexts where the deterministic nature of PRNGs is a problem to be avoided (e.g.,

gaming and computer security), a better approach is that of True Random Number

Generators.

Rather than using a mathematical model to deterministically generate numbers that

look random and have the right statistical properties, a TRNG extracts randomness

(entropy) from a physical source of some type and then uses it to generate random

numbers. The physical source is also referred to as an entropy source and can be

selected among a wide variety of physical phenomenon naturally available, or made

available, to the computing system using the TRNG. For example, one can attempt to

use the time between user key strokes or mouse movements as an entropy source. As

pointed out earlier, this technique is crude in practice and resulting value sequences

generally fail to meet desired statistical properties with rigor. The problem of what to

use as an entropy source in a TRNG, is a key challenge facing TRNG designers.

Beyond statistical rigor, it is also desirable for TRNGs to be fast and scalable (i.e.,

capable of generating a large number of random numbers within a small time

interval). This poses a serious problem for many TRNGs because sampling an entropy

source external to the computing system typically requires device I/O and long delay

times relative to the processing speeds of today's computer systems. In general,

sampling an entropy source in TRNGs is slow compared to the computation required by

a PRNG to simply calculate its next random value. For this reason, PRNGs

characteristically provide far better performance than TRNGs and are more scalable.

Unlike PRNGs, however, TRNGs are not deterministic. That is, a TRNG need not be

seeded, and its selection of random values in any given sequence is highly

unpredictable. As such, an attacker cannot use observations of a particular random

number sequence to predict subsequent values in an effective way. This property also

implies that TRNGs have no periodicity. While repeats in random sequence are possible

(albeit unlikely), they cannot be predicted in a manner useful to an attacker.

2.42.42.42.4 Cascade Construction Cascade Construction Cascade Construction Cascade Construction RNGsRNGsRNGsRNGs
A common approach used in modern operating systems (e.g., Linux [2]) and

cryptographic libraries is to take input from an entropy source in order to supply a

buffer or pool of entropy. This entropy pool is then used to provide nondeterministic

random numbers that periodically seed a cryptographically secure PRNG (CSPRNG).

This CSPRNG provides cryptographically secure random numbers that appear truly

random and exhibit a well-defined level of computational attack resistance.

A key advantage of this scheme is performance. It was noted above that sampling an

entropy source is typically slow since it often involves device I/O of some type and

often additional waiting for a real-time sampling event to transpire. In contrast,

CSPRNG computations are fast since they are processor-based and avoid I/O and

entropy source delays. Combined, the approach offers improved performance over

TRNGs: a slow entropy source periodically seeding a fast CSPRNG capable of

generating a large number of random values from a single seed.

Intel DRNG Software Implementation Guide

9

Figure 1: Cascade Contruction Random Number Generator

While this approach would seem ideal, in practice it often falls far short. First, since the

implementation is typically in software, it is vulnerable to a broad class of software

attacks. For example, considerable state requirements create the potential for

memory-based attacks or timing attacks. Second, the approach does not solve the

problem of what entropy source to use. Without an external source of some type,

entropy quality is likely to be poor. For example, sampling user events (e.g., mouse,

keyboard) may be impossible if the system resides in a large data center. Even with an

external entropy source, entropy sampling is likely to be slow, making seeding events

less frequent than desired.

2.52.52.52.5 Introducing Introducing Introducing Introducing the the the the Digital Random Number GeneratDigital Random Number GeneratDigital Random Number GeneratDigital Random Number Generator or or or

(DRNG)(DRNG)(DRNG)(DRNG)
The Digital Random Number Generator (DRNG) is an innovative hardware approach to

high-quality, high-performance entropy and random number generation. It is

composed of a new Intel 64 Architecture instruction, RDRAND, and an underlying

DRNG hardware implementation.

With respect to the RNG taxonomy discussed above, the DRNG follows the cascade

construction RNG model, using a processor resident entropy source to repeatedly seed

a hardware-implemented CSPRNG. Unlike software approaches, it includes a high-

quality entropy source implementation that can be sampled quickly to repeatedly seed

the CSPRNG with high-quality entropy. Furthermore, it represents a self-contained

hardware module that is isolated from software attacks on its internal state. The result

Intel DRNG Software Implementation Guide

10

is a solution that achieves RNG objectives with considerable robustness: statistical

quality (independence, uniform distribution), highly unpredictable random number

sequences, high performance, and protection against attack.

This method of digital random number generation is unique in its approach to true

random number generation in that it is implemented in hardware on the processor chip

itself and can be utilized through a new instruction added to the Intel 64 instruction

set. As such, response times are comparable to those of competing PRNG approaches

implemented in software. The approach is scalable enough for even demanding

applications to use it as an exclusive source of random numbers and not merely a high

quality seed for a software-based PRNG. Software running at all privilege levels can

access random numbers through the instruction set, bypassing intermediate software

stacks, libraries, or operating system handling.

The use of RDRAND leverages a variety of cryptographic standards to ensure the

robustness of its implementation and to provide transparency in its manner of

operation. These include NIST SP800-90, FIPS-140-2, and ANSI X9.82. Compliance to

these standards makes Digital Random Number Generation with RDRAND a viable

solution for highly regulated application domains in government and commerce.

Section 3 describes digital random number generation in detail. Section 4 describes

use of RDRAND, an Intel 64 instruction set extension for using the DRNG.

2.62.62.62.6 ApplicationsApplicationsApplicationsApplications for thefor thefor thefor the Digital Random Number GeneratDigital Random Number GeneratDigital Random Number GeneratDigital Random Number Generatorororor
Information security is a key application that utilizes the DRNG. Cryptographic

protocols rely on RNGs for generating keys and fresh session values (e.g., a nonce) to

prevent replay attacks. In fact, a cryptographic protocol may have considerable

robustness but suffer from widespread attack due to weak key generation methods

underlying it (e.g., Debian/OpenSSL Fiasco [3]). The DRNG can be used to fix this

weakness, thus significantly increasing cryptographic robustness.

Closely related are government and industry applications. Due to information

sensitivity, many such applications must demonstrate their compliance with security

standards like FISMA, HIPPA, PCIAA, etc. RDRAND has been engineered to meet

existing security standards like NIST SP800-90, FIPS 140-2, and ANSI X9.82, and thus

provides an underlying RNG solution that can be leveraged in demonstrating

compliance with information security standards.

Other uses of the DRNG include:

• Communication protocols

• Monte Carlo simulations and scientific computing

• Gaming applications

• Bulk entropy applications like secure disk wiping or document shredding

• Protecting online services against RNG attacks

Intel DRNG Software Implementation Guide

11

3333 DRNG ODRNG ODRNG ODRNG Overviewverviewverviewverview

In this section, we describe in some detail the components of the DRNG using the

RDRAND instruction and their interaction.

3.13.13.13.1 Processor Processor Processor Processor ChipChipChipChip ViewViewViewView
Figure 2 provides a high-level schematic of the RDRAND Random Number

Generation. As shown, the DRNG appears as a hardware module on the processor

chip. An interconnect bus connects it with each core.

Figure 2: Digital Random Number Generator using RDRAND Design

The RDRAND instruction (detailed in section 4) is handled by microcode on each

core. This includes an RNG microcode module that handles interactions with the

DRNG hardware module on the processor chip.

Intel DRNG Software Implementation Guide

12

3.23.23.23.2 Component Component Component Component ArchitectureArchitectureArchitectureArchitecture
As shown in Figure 3, the DRNG can be thought of as three logical components

forming an asynchronous production pipeline: an entropy source (ES) that

produces random bits from a nondeterministic hardware process at around 3

Gbps, a conditioner that uses AES[4] in CBC-MAC[6] mode to distill the entropy

into high-quality nondeterministic random numbers, and a deterministic random

bit generator (DRBG) that is seeded from the conditioner.

The conditioner can be equated to the entropy pool in the cascade construction

RNG described previously. However, since it is fed by a high-quality, high-speed,

continuous stream of entropy that is faster than downstream processes can

consume, it does not need to maintain an entropy pool. Instead, it is always

conditioning fresh entropy independent of past and future entropy.

The final stage is a hardware CSPRNG that is based on AES in CTR mode and is

compliant with SP800-90. In SP800-90 terminology, this is referred to as a DRBG

(Deterministic Random Bit Generator), a term we will use throughout the

remainder of this document.

Figure 3: DRNG Component Architecture

3.2.13.2.13.2.13.2.1 Entropy Source (ES)Entropy Source (ES)Entropy Source (ES)Entropy Source (ES)

The all-digital Entropy Source (ES), also known as a non-deterministic random bit

generator (NRBG), provides a serial stream of entropic data in the form of zeros

and ones.

The ES runs asynchronously on a self-timed circuit and uses thermal noise within

the silicon to output a random stream of bits at the rate of 3 GHz. The ES needs

no dedicated external power supply to run, instead using the same power supply

as other core logic. The ES is designed to function properly over a wide range of

operating conditions, exceeding the normal operating range of the processor.

Intel DRNG Software Implementation Guide

13

Bits from the ES are passed to the conditioner for further processing.

3.2.23.2.23.2.23.2.2 ConditionerConditionerConditionerConditioner

The conditioner takes pairs of 256-bit raw entropy samples generated by the ES

and reduces them to a single 256-bit conditioned entropy sample using AES-CBC-

MAC. This has the effect of distilling the entropy into more concentrated samples.

AES, Advanced Encryption Standard, is defined in the FIPS-197 Advanced

Encryption Standard [4]. CBC-MAC, Cipher Block Chaining - Message

Authentication Code, is defined in NIST SP 800-38A Recommendation for Block

Cipher Modes of Operation [6].

The conditioned entropy is output as a 256-bit value and passed to the next

stage in the pipeline to be used as a DRBG seed value.

3.2.33.2.33.2.33.2.3 Deterministic Random Bit Generator (DRBG)Deterministic Random Bit Generator (DRBG)Deterministic Random Bit Generator (DRBG)Deterministic Random Bit Generator (DRBG)
The role of the deterministic random bit generator (DRBG) is to "spread" a

conditioned entropy sample into a large set of random values, thus increasing the

amount of random numbers available by the hardware module. This is done by

employing a standards-compliant DRBG and continuously reseeding it with the

conditioned entropy samples.

The DRBG chosen for this function is the CTR_DRBG defined in section 10.2.1 of

NIST SP 800-90 [5], using the AES block cipher. Values that are produced fill a

FIFO output buffer that is then used in responding to RDRAND requests for

random numbers.

The DRBG autonomously decides when it needs to be reseeded to refresh the

random number pool in the buffer and is both unpredictable and transparent to

the RDRAND caller. An upper bound of 511 128-bit samples will be generated per

seed. That is, no more than 511*2=1022 sequential DRNG random numbers will

be generated from the same seed value.

3.33.33.33.3 Robustness and SelfRobustness and SelfRobustness and SelfRobustness and Self----ValidationValidationValidationValidation
To ensure the DRNG functions with a high degree of reliability and robustness,

validation features have been included that operate in an ongoing manner and at

system startup time. These include the DRNG Online Health Tests (OHTs) and

Built-In Self Tests (BISTs), respectively. Both are shown in Figure 4.

Intel DRNG Software Implementation Guide

14

Figure 4: DRNG Self-Validation Components

Digital Random Number Generator Software Implementation Guide

16

3.3.13.3.13.3.13.3.1 Online Health TestsOnline Health TestsOnline Health TestsOnline Health Tests (OHTs)(OHTs)(OHTs)(OHTs)
Online Health Tests (OHTs) are designed to measure the quality of entropy

generated by the ES using both per sample and sliding window statistical tests in

hardware.

Per sample tests compare bit patterns against expected pattern arrival

distributions as specified by a mathematical model of the ES. An ES sample that

fails this test is marked "unhealthy." Using this distinction, the conditioner can

ensure that at least two healthy samples are mixed into each seed. This defends

against hardware attacks that might seek to reduce the entropic content of the

ES output.

Sliding window tests look at sample health across many samples to verify they

remain above a required threshold. The sliding window size is large (65536 bits)

and mechanisms overall ensure that ES is operating correctly before it will issue

random numbers. In the rare event that the DRNG fails during runtime, it would

cease to issue random numbers rather than issue poor quality random numbers.

3.3.23.3.23.3.23.3.2 BuiltBuiltBuiltBuilt----In Self Tests In Self Tests In Self Tests In Self Tests (BISTs)(BISTs)(BISTs)(BISTs)

Built-In Self Tests (BISTs) are designed to verify the health of the ES prior to

making the DRNG available to software. These include Entropy Source Tests (ES-

BIST) that are statistical in nature, and comprehensive test coverage of all the

DRNG’s deterministic downstream logic through BIST Known Answer Tests (KAT-

BIST).

ES-BIST involves running the DRNG for a probationary period in its normal mode

before making the DRNG available to software. This allows the OHTs to examine

ES sample health for a full sliding window (256 samples) before concluding that

ES operation is healthy. It also fills the sliding window sample pipeline to ensure

the health of subsequent ES samples, seeds the PRNG, and fills the output queue

of the DRNG with random numbers.

KAT-BIST tests both OHT and end-to-end correctness using deterministic input

and output validation. First, various bit stream samples are input to the OHT,

including a number with poor statistical quality. Samples cover a wide range of

statistical properties and test whether the OHT logic correctly identifies those that

are "unhealthy." During the KAT-BIST phase, deterministic random numbers are

output continuously from the end of the pipeline. The BIST Output Test Logic

verifies that the expected outputs are received.

If there is a BIST failure during startup, the DRNG will refuse to issue random

numbers and will issue a BIST failure notification to the on-chip test circuitry.

This BIST logic avoids the need for conventional on-chip test mechanisms (e.g.,

scan and JTAG) that could undermine the security of the DRNG.

Intel DRNG Software Implementation Guide

17

3.43.43.43.4 RDRANDRDRANDRDRANDRDRAND
Software access to the DRNG is through a new instruction, RDRAND, and is

documented in Section 7 of the Intel® 64 and IA-32 Architectures Software

Developer’s Manual.

RDRAND retrieves a hardware generated random value from the DRNG and

stores it in the destination register given as an argument to the instruction. The

size of the random value (16-, 32-, or 64-bits) is determined by the size of the

register given. The carry flag (CF) must be checked to determine whether a

random value was available at the time of instruction execution.

Note that RDRAND is available to any system or application software running on

the platform. That is, there are no hardware ring requirements that restrict

access based on process privilege level. As such, RDRAND may be invoked as

part of an operating system or hypervisor system library, a shared software

library, or directly by an application.

To determine programmatically whether a given Intel platform supports RDRAND,

the user can use the CPUID instruction to examine bit 30 of the ECX register. See

Reference [7] for details.

3.53.53.53.5 Performance Performance Performance Performance
Designed to be a high performance entropy resource shared between multiple

cores/threads, Digital Random Number Generation combined with RDRAND

represents a new generation of RNG performance.

The DRNG is implemented in hardware as part of the processor chip. As such,

both the entropy source and the DRBG execute at processor clock speeds. Unlike

other hardware-based solutions, there is no system I/O required to obtain

entropy samples, and no off-chip bus latencies to slow entropy transfer or create

bottlenecks when multiple requests have been issued.

Random values are delivered directly through an instruction level request

(RDRAND). This bypasses both operating system and software library handling of

the request. The DRNG is scalable enough to support heavy server application

workloads. Within the context of virtualization, the DRNG's stateless design and

atomic instruction access means that RDRAND can be used freely by multiple VMs

without the need for hypervisor intervention or resource management.

Below are some charts showing some preliminary data from a pre-production

sample on a system with a 3rd generation Intel® Core™ family processor, code-

named Ivy Bridge:

Disclaimer: Data taken from an early engineering sample board with a 3rd

generation Intel Core family processor, code-named Ivy Bridge, quad core, 4

GB memory, hyper-threading enabled. Software: LINUX* Fedora 14, GCC

version 4.6.0 (experimental) with RDRAND support, test uses p-threads

kernel API.

Measured Throughput:

Intel DRNG Software Implementation Guide

18

• Up to 70 million RDRAND invocations per second

• 500+ million bytes of random data per second

• Throughput ceiling is insensitive to the number of contending parallel threads

Notice that steady state is maintained at peak performance

RDRAND Response Time and Reseeding Frequency

• ~150 clocks per invocation

Note: Varies with CPU clock frequency since constraint is shared data path

from DRNG to cores.

• Little contention until 8 threads

– or 4 threads on 2 core chip

• Simple linear increase as additional threads are added

– DRNG Reseed Frequency

• Single thread worst case: Reseeds every 4 RDRAND invocations

• Multiple thread worst case: Reseeds every 23 RDRAND invocations

• At slower invocation rate, can expect reseed before every 2 RDRAND calls

Intel DRNG Software Implementation Guide

19

– NIST SP 800-90 recommends ≤ 248

3.63.63.63.6 Power Requirements Power Requirements Power Requirements Power Requirements
The DRNG hardware resides on the processor chip. As such, it needs no

dedicated power supply to run. Instead it simply uses the processor's local power

supply. As described in section 3.2.1, it furthermore is designed to function

across a range of process voltage and temperature (PVT) levels, exceeding the

normal operating range of the processor.

The DRNG does not impact power management mechanisms and algorithms

associated with individual cores. For example, ACPI-based mechanisms for

regulating processor performance states (P-states) and processor idle states (C-

states) on a per core basis are unaffected.

To save power, the DRNG clock gates itself off when queues are full. This idle-

based mechanism results in negligible power requirements whenever entropy

computation and post processing are not needed.

Intel DRNG Software Implementation Guide

20

4444 RDRANDRDRANDRDRANDRDRAND InstructionInstructionInstructionInstruction UsageUsageUsageUsage

In this section, we provide RDRAND instruction reference information and usage

examples for programmers. All code examples in this guide are licensed under

the new, 3-clause BSD license, making them freely usable within nearly any

software context.

For additional details on RDRAND usage and code examples, see Reference [7].

Determining Processor Support for RDRAND

Before using the RDRAND instruction, an application or library should first

determine whether the underlying platform supports the instruction, and hence

includes the underlying DRNG feature. This can be done using the CPUID

instruction. In general, CPUID is used to return processor identification and

feature information stored in the EAX, EBX, ECX, and EDX registers. For detailed

information on CPUID, refer to References [8] and [9].

To be specific, support for RDRAND can be determined by examining bit 30 of the

ECX register returned by CPUID. As shown in Tables 1 (below) and 2-23 in

Reference [7], a value of 1 indicates processor support for RDRAND while a value

of 0 indicates no processor support.

Bit # Mnemonic Description

30 RDRAND A value of 1 indicates that processor supports

RDRAND instruction

Table 1: Feature information returned in the ECX register.

Two options for invoking the CPUID instruction within the context of a high-level

programming language like C or C++ are with:

• An inline assembly routine

• An assembly routine defined in an independent file.

Various examples in this chapter will illustrate both techniques. The advantage of

inline assembly is that it is straightforward and easily readable within its source

code context. The disadvantage, however, is that conditional code is often

needed to handle the possibility of different underlying platforms. This can

quickly compromise readability. For this reason, we often favor defining an

assembly routine in an independent file and then invoking it by its declared

name. Now the original source code (the caller of the routine) can remain

unchanged, while the build system can handle choosing among code versions of

the same routine for different platform targets.

This Implementation Guide describes Linux implementation. Please see the DRNG

downloads for Windows* and Mac* OS examples.

Intel DRNG Software Implementation Guide

21

- Note: Nothing goes to memory. These samples were written a certain way for

a reason.

Example 1 shows the definition of the function get_cpuid_info_v1 for gcc

compilation on 64-bit Linux.

.intel_syntax noprefix

 .text

 .global get_cpuid_info_v1

get_cpuid_info_v1:

 mov r8, rdi # array addr

 mov r9, rsi # leaf

 mov r10, rdx # subleaf

 push rax

 push rbx

 push rcx

 push rdx

 mov eax, r9d

 mov ecx, r10d

 cpuid

 mov DWORD PTR [r8], eax

 mov DWORD PTR [r8+4], ebx

 mov DWORD PTR [r8+8], ecx

 mov DWORD PTR [r8+12], edx

 pop rdx

 pop rcx

 pop rbx

 pop rax

 ret 0

#get_cpuid_info_v1 ENDP

#_TEXT ENDS

Code Example 1: Using CPUID to detect support for RDRAND on 64-bit Linux.

The routine, defined in the file get_cpuid_v1_lix64.s, can be compiled into object

code with gcc as follows:

gcc -g -c get_cpuid_v1_lix64.s -o get_cpuid_v1_lix64.o

To use the IA-64 assembly routine, first define the data structure to be passed to

the routine in a header file like get_cpuid_v1_lix64.h:

typedef struct {

 unsigned int EAX;

 unsigned int EBX;

 unsigned int ECX;

Intel DRNG Software Implementation Guide

22

 unsigned int EDX;

} CPUIDinfo;

extern void get_cpuid_info_v1(CPUIDinfo *info, const unsigned int func,

const unsigned int subfunc);

Code Example 2: Header file to be used by assembly routine caller.

This header file also declares the function and uses extern to indicate that it is

externally defined.

To invoke this assembly routine from a C/C++ program, include the above
header file, create a CPUIDinfo object to hold the results, and invoke the

externally defined function. One possible implementation of these steps is as

follows:

#include "get_cpuid_v1_lix64.h"

void _CPUID(CPUIDinfo *info, const unsigned int func, const unsigned int

subfunc)

{

 get_cpuid_info_v1(info, func, subfunc);

}

typedef unsigned int DWORD;

int _rdrand_check_support()

{

 CPUIDinfo info;

 int got_intel_cpu=0;

 _CPUID(&info,0,0);

 if(memcmp((char *)(&info.EBX), "Genu", 4) == 0 &&

 memcmp((char *)(&info.EDX), "ineI", 4) == 0 &&

 memcmp((char *)(&info.ECX), "ntel", 4) == 0) {

 got_intel_cpu = 1;

 }

 if (got_intel_cpu) {

 _CPUID(&info,1,0);

 if ((info.ECX & 0x40000000)==0x40000000) return 1;

 }

 return 0;

}

Code Example 3: Invoking get_cpuid_info_v1 to determine RDRAND support.

Intel DRNG Software Implementation Guide

23

After the first _CPUID call in this example, the code checks whether the current

processor is an Intel product. After the second _CPUID call, the code checks the

RDRAND bit. Checking the manufacturer becomes important if another

manufacturer uses bit 30 for a different purpose.

4.14.14.14.1 Using Using Using Using RDRANDRDRANDRDRANDRDRAND tttto Obtain Random Valueso Obtain Random Valueso Obtain Random Valueso Obtain Random Values
Once support for RDRAND can be verified using CPUID, the RDRAND instruction

can be invoked to obtain a 16-, 32-, or 64-bit random integer value. Note that

this instruction is available at all privilege levels on the processor, so system

software and application software alike may invoke RDRAND freely.

The Intel® 64 and IA-32 Architectures Software Developer’s Manual [7] provides

a table describing RDRAND instruction usage as follows:

Opcode/

Instruction

Op

Encoding

64/32bit

Mode

Support

CPUID

Feature

Flag

Description

0F C7 /6

RDRAND r16

ModRM:r

/m(w)

V/V RDRAND Read a 16-bit random

number and store in the

destination register.

0F C7 /6

RDRAND r32

ModRM:r

/m(w)

V/V RDRAND Read a 32-bit random

number and store in the

destination register.

REX.W + 0F C7 /6

RDRAND r64

ModRM:r

/m(w)

V/I RDRAND Read a 64-bit random

number and store in the

destination register.

Table 2: RDRAND instruction reference

Essentially, the user invokes this instruction with a single operand, the

destination register where the random value will be stored. Note that this register

must be a general purpose register, and the size of the register (16, 32, or 64

bits) will determine the size of the random value returned.

After invoking the RDRAND instruction, the caller must examine the carry rlag

(CF) to determine whether a random value was available at the time the RDRAND

instruction was executed. A value of 1 indicates that a random value was

available and placed in the destination register provided in the invocation. A

value of 0 indicates that a random value was not available. In this case, the

destination register will also be zeroed.

Note that a destination register value of zero should not be used as an indicator

of random value availability. The CF is the sole indicator of random value

availability.

Intel DRNG Software Implementation Guide

24

Carry Flag Value Outcome

CF = 1 Destination register valid. Non-zero random value

available at time of execution. Result placed in

register.

CF = 0 Destination register all zeros. Random value not

available at time of execution. May be retried.

Table 3: Carry Flag (CF) outcome semantics.

4.1.14.1.14.1.14.1.1 Simple Simple Simple Simple RDRANDRDRANDRDRANDRDRAND InvocationInvocationInvocationInvocation

The unlikely possibility that a random value may not be available at the time of

RDRAND instruction invocation has significant implications for system or

application API definition. While many random functions are defined quite simply

in the form:

unsigned int GetRandom()

use of RDRAND requires wrapper functions that appropriately manage the

possible outcomes based on the CF flag value.

One handling approach is to simply pass the instruction outcome directly back to

the invoking routine. A function signature for such an approach may take the

form:

int rdrand(unsigned int *therand)

In this approach, the return value of the function acts as a flag indicating to the

caller the outcome of the RDRAND instruction invocation. If 1, the variable

passed by reference will be populated with a usable random value. If 0, the caller

understands that the value assigned to the variable is not usable. The advantage

of this approach is that it gives the caller the option to decide how to proceed

based on the outcome of the call.

Code examples 4, 5, and 6 show how this approach can be implemented for 16-,

32-, and 64-bit invocations of RDRAND using the inline assembly approach.

int _rdrand16_step(unsigned short *therand) {

 unsigned char err;

 asm volatile("rdrand %0 ; setc %1"

 : "=r" (*therand), "=qm" (err));

Intel DRNG Software Implementation Guide

25

 return (int) err;

}

Code Example 4: Simple RDRAND invocation for a 16-bit random value

int _rdrand32_step(unsigned int *therand) {

 unsigned char err;

 asm volatile("rdrand %0 ; setc %1"

 : "=r" (*therand), "=qm" (err));

 return (int) err;

}

Code Example 5: Simple RDRAND invocation for a 32-bit random value

int _rdrand64_step(unsigned long long int *therand) {

 unsigned char err;

 asm volatile("rdrand %0 ; setc %1"

 : "=r" (*therand), "=qm" (err));

 return (int) err;

}

Code Example 6: Simple RDRAND invocation for a 64-bit random value

4.1.24.1.24.1.24.1.2 RDRANDRDRANDRDRANDRDRAND Retry LoopRetry LoopRetry LoopRetry Loop
An alternate approach for handling random value unavailability at the time of

RDRAND execution is to use a retry loop. In this approach, an additional

argument allows the caller to specify the maximum number of retries before

returning a failure value.

int rdrand(unsigned int retry_limit, unsigned int *therand)

Once again, the success or failure of the function is indicated by its return value

and the actual random value, assuming success, is passed to the caller by a

reference variable.

Code example 7 shows an implementation for 32-bit random values using the

function from the previous section as an underlying primitive.

int _rdrand_get_uint_retry(unsigned int retry_limit, unsigned int *dest)

{

int success;

Intel DRNG Software Implementation Guide

26

int count;

unsigned int therand;

count = 0;

do

{

 success=_rdrand32_step(&therand);

} while((success == 0) || (count++ < retry_limit));

if (success == 1)

{

 *dest = therand;

 return 1;

}

else

{

 return 0;

}

}

Code Example 7: 32-bit RDRAND invocation with a retry loop

4.24.24.24.2 Initializing Data Objects of Arbitrary SizeInitializing Data Objects of Arbitrary SizeInitializing Data Objects of Arbitrary SizeInitializing Data Objects of Arbitrary Size
A common random function within RNG libraries is seen below:

int rdrand_get_n_bytes(unsigned int n, unsigned char *dest)

In this function, a data object of arbitrary size is initialized with random bytes.

The size is specified by the variable n, and the data object is passed in as a

pointer to char or void.

Implementing this function requires a loop control structure and iterative calls to
the rdrand64_step() or rdrand32_step() functions shown previously. To

simplify, let's first consider populating an array of unsigned int with random
values in this manner using rdrand32_step().

int rdrand_get_n_uints(int n, unsigned int *dest)

{

 int dwords;

 int i;

 unsigned int drand;

 int success;

 int total_uints;

 total_uints = 0;

Intel DRNG Software Implementation Guide

27

 for (i=0; i<dwords; i++)

 {

 if (rdrand32_step(&drand))

 {

 *dest = drand;

 dest++;

 total_uints++;

 }

 else

{

i = dwords;

}

 }

 return total_uints;

}

Code Example 8: Initializing an object of arbitrary size using RDRAND

The function returns the number of unsigned int values assigned. The caller would

check this value against the number requested to determine whether assignment was

successful. Other implementations are possible, for example, using a retry loop to

handle the unlikely possibility of random number unavailability.

In the next example, we reduce the number of RDRAND calls in half by using
rdrand64_step() instead of rdrand32_step().

int rdrand_get_n_uints(int n, unsigned int *dest)

{

 int qwords;

 int i;

 unsigned long int qrand;

 int success;

 int total_uints;

 unsigned long int *qptr;

 total_uints = 0;

 qptr = (unsigned long int*)dest;

 qwords = n/2;

 for (i=0; i<qwords; i++)

 {

 if (_rdrand64_step(&qrand))

 {

 *qptr = qrand;

 qptr++;

 total_uints+=2;

 }

 else

Intel DRNG Software Implementation Guide

28

{

i = qwords;

}

 }

 if ((qwords > 0) && (success == 0))

return total_uints;

}

Code Example 9: Initializing an object of arbitrary size using RDRAND.

Finally, we show how a loop control structure and rdrand64_step() can be used to

populate a byte array with random values.

int _rdrand_get_bytes_step(unsigned int n, unsigned char *dest)

{

unsigned char *start;

unsigned char *residualstart;

unsigned long long int *blockstart;

unsigned int count;

unsigned int residual;

unsigned int startlen;

unsigned long long int i;

unsigned long long int temprand;

unsigned int length;

/* Compute the address of the first 64 bit aligned block in the destination

buffer */

 start = dest;

 if (((unsigned long int)start % (unsigned long int)8) == 0)

 {

blockstart = (unsigned long long int *)start;

count = n;s

startlen = 0;

 }

 else

 {

blockstart = (unsigned long long int *)(((unsigned long long int)start &

~(unsigned long long int)7)+(unsigned long long int)8);

count = n - (8 - (unsigned int)((unsigned long long int)start % 8));

startlen = (unsigned int)((unsigned long long int)blockstart - (unsigned

long long int)start);

 }

 /* Compute the number of 64 bit blocks and the remaining number of bytes */

 residual = count % 8;

 length = count >> 3;

 if (residual != 0)

Intel DRNG Software Implementation Guide

29

 {

 residualstart = (unsigned char *)(blockstart + length);

 }

/* Get a temporary random number for use in the residuals. Failout if retry

fails */

 if (startlen > 0)

 {

if (_rdrand_get_n_qints_retry(1, 10, (void *)&temprand) == 0) return 0;

 }

 /* populate the starting misaligned block */

for (i = 0; i<startlen; i++)

 {

 start[i] = (unsigned char)(temprand & 0xff);

 temprand = temprand >> 8;

 }

 /* populate the central aligned block. Fail out if retry fails */

 if (_rdrand_get_n_qints_retry(length, 10, (void *)(blockstart)) == 0) return

0;

 /* populate the final misaligned block */

 if (residual > 0)

 {

 if (_rdrand_get_n_qints_retry(1, 10, (void *)&temprand) == 0) return

0;

 for (i = 0; i<residual; i++)

 {

 residualstart[i] = (unsigned char)(temprand & 0xff);

 temprand = temprand >> 8;

 }

 }

 return 1;

}

Code Example 10: Initializing an object of arbitrary size using RDRAND

4.34.34.34.3 Library API Library API Library API Library API RecommendationsRecommendationsRecommendationsRecommendations

Library APIs making RDRAND available to other applications may do so at two

levels. First, a library may offer a low-level wrapper for invoking RDRAND to

obtain 16-, 32-, or 64-bit random values. Results of the CF flag value indicating

availability of a random value at the time of execution are returned directly to the

caller.

Intel DRNG Software Implementation Guide

30

int _rdrand_u16_step(unsigned short int *);

int _rdrand_u32_step(unsigned int *);

int _rdrand_u64_step(unsigned __int64 *);

Second, a library may offer high-level functions that manage various aspects of

RDRAND invocation. Functions may, for example, handle the possibility of

random value unavailability with retry loops.

int _rdrand_get_uint_retry(unsigned int retry_limit, unsigned int *dest);

Other functions may handle multiple invocations of RDRAND to fill arrays or other

objects of arbitrary size and type.

int _rdrand_get_rand_step(unsigned int n, void *dest);

int _rdrand_get_rand_step_retry(unsigned int n, unsigned int retry_limit,

void *dest);

4.44.44.44.4 GuaranteeingGuaranteeingGuaranteeingGuaranteeing DBRG DBRG DBRG DBRG ResResResReseeding eeding eeding eeding

As a high performance source of random numbers, the DRNG is both fast and

scalable. It is directly usable as a sole source of random values underlying an

application or operating system RNG library. Still, some software venders will

want to use the DRNG to seed and reseed in an ongoing manner their current

software PRNG. Some may furthermore feel it necessary, for standards

compliance, to demand an absolute guarantee that values returned by RDRAND

reflect independent entropy samples within the DRNG.

As described in section 3.2.3, the DRNG makes use of a deterministic random bit

generator, or DRBG, to "spread" a conditioned entropy sample into a large set of

random values, thus increasing the number of random numbers available by the

hardware module. The DRBG autonomously decides when it needs to be

reseeded, behaving in a way that is unpredictable and transparent to the

RDRAND caller. There is an upper bound of 511 samples per seed in the

implementation where samples are 128 bits in size and can provide two 64-bit

random numbers each. In practice, the DRBG is reseeded frequently, and it is

generally the case that reseeding occurs long before the maximum number of

samples can be requested by RDRAND.

There are two approaches to structuring RDRAND invocations such that DRBG

reseeding can be guaranteed:

• Iteratively execute RDRAND beyond the DRBG upper bound by executing

more than 1022 64-bit RDRANDs

• Iteratively execute 32 RDRAND invocations with a 10 us wait period per

iteration.

Intel DRNG Software Implementation Guide

31

The latter approach has the effect of forcing a reseeding event since the DRBG

aggressively reseeds during idle periods.

The code example below exercises the second approach to guarantee that the

random value returned is based on an entropy sample independent from the prior

function invocation and independent from the subsequent function invocation.

/* CBC-MAC together 32 128 bit values, gathered with delays between, to guarantee

some intervening reseeds */

/* Creates a random value that is fully forward and backward prediction

resistant, suitable for seeding a NIST SP800-90 Compliant, FIPS 1402-2

certifiable SW DRBG */

int _rdrand_get_seed128_retry(unsigned int retry_limit, void *buffer)

{

 unsigned char m[16];

 unsigned char key[16];

 unsigned char ffv[16]; /* feed forward value */

 unsigned char xored[16];

 unsigned int i;

 for (i=0;i<16;i++)

 {

 key[i]=(unsigned char)i;

 ffv[i]=0;

 }

 for (i=0; i<32; i++)

 {

 usleep(10);

 if (_rdrand_get_n_uints_retry(2,retry_limit,(unsigned long long

int*)m) == 0) return 0;

 xor_128(m,ffv,xored);

 aes128k128d(key,xored,ffv);

 }

 for (i=0;i<16;i++) ((unsigned char *)buffer)[i] = ffv[i];

 return 1;

}

Note the use of xor_128() and aes128k128d(), two functions found in most AES

library implementations. The random data gathered from the multiple RDRAND

invocations should be combined using a suitable cryptographic function to yield a

single 128-bit value that is suitable for use as a seed by a secure software PRNG.
Here, xor_128 () and aes128k128d() together implement the AES-CBC-MAC mode of

operation with AES.

Intel DRNG Software Implementation Guide

32

Intel DRNG Software Implementation Guide

33

5555 ReferencesReferencesReferencesReferences

[1] Makoto Matsumoto and Takuji Nishimura, (1998). Mersenne Twister: A 623-

Dimensionally Equidistributed Uniform Pseudo-Random Number Generator. ACM

Transactions on Modeling and Computer Simulation, Vol. 8, No. 1, January 1998.

[2] Z. Gutterman, B. Pinkas, and T. Reinman. (March, 2006). Analysis of the Linux

Random Number Generator. http://www.pinkas.net/PAPERS/gpr06.pdf

[3] CVE-2008-0166 (http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-

0166)

[4] Information Processing Standard Publication 197, Nov 26th 2001, Specification for

the Advanced Encryption Standard (AES)

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[5] SP800-90 reference is ‘NIST Special Publication 800-90, Recommendation for

Random Number Generation Using Deterministic Random Bit Generators

(Revised), March 2007’ http://csrc.nist.gov/publications/nistpubs/800-90/SP800-

90revised_March2007.pdf

[6] NIST Special Publication 800-38A, Recommendation for Block Cipher Modes of

Operation,http://csrc.nist.gov/publications/nistpubs/800-38a/addendum-to-

nist_sp800-38A.pdf

[7] Intel® 64 and IA-32 Architectures Software Developer's Manual, Section 7.3.18

RDRAND.

[8] Intel® Processor Identification and the CPUID Instruction. April 2012.

[9] Intel® 64 and IA-32 Architectures Software Developer's Manual. Volume 2A and

2B: Instruction Set Reference.

Intel DRNG Software Implementation Guide

34

NoticesNoticesNoticesNotices

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS.

NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY

INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS

PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL

ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED

WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY

OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,

MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER

INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT

DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL

PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY

OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked

"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility

whatsoever for conflicts or incompatibilities arising from future changes to them. The information

here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata

which may cause the product to deviate from published specifications. Current characterized errata

are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before

placing your product order.

Copies of documents which have an order number and are referenced in this document, or other

Intel literature, may be obtained by calling 1-800-548-4725, or go to:

 http://www.intel.com/design/literature.htm

Intel, the Intel logo, VTune, Cilk and Xeon are trademarks of Intel Corporation in the U.S. and

other countries.

*Other names and brands may be claimed as the property of others

Copyright© 2012 Intel Corporation. All rights reserved.

Intel DRNG Software Implementation Guide

35

Optimization NoticeOptimization NoticeOptimization NoticeOptimization Notice

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for

optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3,

and SSE3 instruction sets and other optimizations. Intel does not guarantee the availability,

functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel

microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel

microprocessors. Please refer to the applicable product User and Reference Guides for more

information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

