
 Page 1 of 3 

Expose Parallelism by Avoiding or Removing Artificial 
Dependencies 
<keywords: data dependencies, compiler optimizations, blocking algorithms, Win32 threads, 
OpenMP, Pthreads> 

Abstract 

Many applications and algorithms contain serial optimizations that inadvertently introduce data 

dependencies and inhibit parallelism. One can often remove such dependences through simple 
transforms, or even avoid them altogether through techniques such as domain decomposition or 

blocking. 

This article is part of the larger series, "The Intel Guide for Developing Multithreaded 

Applications," which provides guidelines for developing efficient multithreaded applications for 
Intel® platforms. 

Background 

While multithreading for parallelism is an important source of performance, it is equally important 

to ensure that each thread runs efficiently. While optimizing compilers do the bulk of this work, it 
is not uncommon for programmers to make source code changes that improve performance by 

exploiting data reuse and selecting instructions that favor machine strengths. Unfortunately, the 

same techniques that improve serial performance can inadvertently introduce data dependencies 
that make it difficult to achieve additional performance through multithreading. 

One example is the re-use of intermediate results to avoid duplicate computations. As an 
example, softening an image through blurring can be achieved by replacing each image pixel by 

a weighted average of the pixels in its neighborhood, itself included. The following pseudo-code 
describes a 3x3 blurring stencil: 

for each pixel in (imageIn) 

  sum = value of pixel 

  // compute the average of 9 pixels from imageIn 

  for each neighbor of (pixel) 

    sum += value of neighbor 

  // store the resulting value in imageOut 

  pixelOut = sum / 9 

 

The fact that each pixel value feeds into multiple calculations allows one to exploit data reuse for 

performance. In the following pseudo-code, intermediate results are computed and used three 
times, resulting in better serial performance: 

subroutine BlurLine (lineIn, lineOut) 

  for each pixel j in (lineIn) 

    // compute the average of 3 pixels from line 

    // and store the resulting value in lineout 

    pixelOut = (pixel j-1 + pixel j + pixel j+1) / 3 

 

declare lineCache[3] 

lineCache[0] = 0 

BlurLine (line 1 of imageIn, lineCache[1]) 

for each line i in (imageIn) 

  BlurLine (line i+1 of imageIn, lineCache[i mod 3]) 
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  lineSums = lineCache[0] + lineCache[1] + lineCache[2] 

  lineOut = lineSums / 3 

 

This optimization introduces a dependence between the computations of neighboring lines of the 

output image. If one attempts to compute the iterations of this loop in parallel, the dependencies 
will cause incorrect results. 

Another common example is pointer offsets inside a loop: 

ptr = &someArray[0] 

for (i = 0; i < N; i++) 

{ 

  Compute (ptr);   

  ptr++; 

} 

 

By incrementing ptr, the code potentially exploits the fast operation of a register increment and 

avoids the arithmetic of computing someArray[i] for each iteration. While each call to 

compute may be independent of the others, the pointer becomes an explicit dependence; its 

value in each iteration depends on that in the previous iteration. 

Finally, there are often situations where the algorithms invite parallelism but the data structures 

have been designed to a different purpose that unintentionally hinder parallelism. Sparse matrix 
algorithms are one such example. Because most matrix elements are zero, the usual matrix 

representation is often replaced with a “packed” form, consisting of element values and relative 

offsets, used to skip zero-valued entries. 

This article presents strategies to effectively introduce parallelism in these challenging situations. 

Advice 

Naturally, it’s best to find ways to exploit parallelism without having to remove existing 

optimizations or make extensive source code changes. Before removing any serial optimization to 
expose parallelism, consider whether the optimization can be preserved by applying the existing 

kernel to a subset of the overall problem. Normally, if the original algorithm contains parallelism, 
it is also possible to define subsets as independent units and compute them in parallel. 

To efficiently thread the blurring operation, consider subdividing the image into sub-images, or 
blocks, of fixed size. The blurring algorithm allows the blocks of data to be computed 

independently. The following pseudo-code illustrates the use of image blocking: 

// One time operation: 

// Decompose the image into non-overlapping blocks. 

blockList = Decompose (image, xRes, yRes) 

 

foreach (block in blockList) 

{ 

BlurBlock (block, imageIn, imageOut) 

} 

 

The existing code to blur the entire image can be reused in the implementation of BlurBlock. 

Using OpenMP or explicit threads to operate on multiple blocks in parallel yields the benefits of 
multithreading and retains the original optimized kernel. 
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In other cases, the benefit of the existing serial optimization is small compared to the overall cost 

of each iteration, making blocking unnecessary. This is often the case when the iterations are 
sufficiently coarse-grained to expect a speedup from parallelization. The pointer increment 

example is one such instance. The induction variables can be easily replaced with explicit 
indexing, removing the dependence and allowing simple parallelization of the loop. 

ptr = &someArray[0] 

for (i = 0; i < N; i++) 

{ 

  Compute (ptr[i]); 

} 

 

Note that the original optimization, though small, is not necessarily lost. Compilers often optimize 

index calculations aggressively by utilizing increment or other fast operations, enabling the 

benefits of both serial and parallel performance. 

Other situations, such as code involving packed sparse matrices, can be more challenging to 

thread. Normally, it is not practical to unpack data structures but it is often possible to subdivide 
the matrices into blocks, storing pointers to the beginning of each block. When these matrices 

are paired with appropriate block-based algorithms, the benefits of a packed representation and 
parallelism can be simultaneously realized.  

The blocking techniques described above are a case of a more general technique called "domain 

decomposition." After decomposition, each thread works independently on one or more domains. 
In some situations, the nature of the algorithms and data dictate that the work per domain will 

be nearly constant. In other situations, the amount of work may vary from domain to domain. In 
these cases, if the number of domains equals the number of threads, parallel performance can be 

limited by load imbalance. In general, it is best to ensure that the number of domains is 

reasonably large compared to the number of threads. This will allow techniques such as dynamic 
scheduling to balance the load across threads. 

Usage Guidelines 

Some serial optimizations deliver large performance gains. Consider the number of processors 
being targeted to ensure that speedups from parallelism will outweigh the performance loss 

associated with optimizations that are removed. 

Introducing blocking algorithms can sometimes hinder the compiler’s ability to distinguish aliased 
from unaliased data. If, after blocking, the compiler can no longer determine that data is 

unaliased, performance may suffer. Consider using the restrict keyword to explicitly prohibit 

aliasing. Enabling inter-procedural optimizations also helps the compiler detect unaliased data. 

Additional Resources 

Intel® Software Network Parallel Programming Community 

OpenMP* Specifications 

http://software.intel.com/en-us/parallel/
http://openmp.org/

