
Deriving Triangle Plane Equations
April 8th 2005
J.M.P. van Waveren

© 2005, Id Software, Inc.

Abstract
An optimized routine to derive triangle plane equations is presented. The Intel

Streaming SIMD Extensions are used to exploit parallelism through increased

throughput. The optimized routine is well over four times faster than the

commonly used implementation in C on a Pentium 4.

1. Introduction
A plane divides space in two regions or half spaces and is a well known

geometric primitive that is commonly used in many applications. Planes are

often used to describe geometric properties and to define geometric

relationships. Many applications require such geometric relationships to be

evaluated in real time.

The equations of planes are often used in real-time rendering applications.

Backface culling is the process of determining the polygons that face away from

the viewer and as such should not be rendered because the polygons are only

considered visible from one side. The plane equation of a polygon can be used to

cull a polygon that faces away from the viewer by determining whether or not

the viewer is in the half space at the front of the polygon [8].

Several rendering algorithms require the detection of silhouette edges based on

the facing of triangles. The construction of shadow volumes uses the triangle

plane equations to find the triangles that face towards or away from the light

source and to determine the shadow silhouette of the geometry [14]. Silhouette

edge detection based on plane equations is also used for cartoon rendering [13].

Many shading algorithms among which Gouraud and Phong shading use the

surface normal vectors at vertex positions of polygonal or triangle meshes [8]. A

vertex normal can be calculated by averaging or weighing the plane normal

vectors of all the polygons or triangles that use the vertex [9,10,11,12]. Surface

normals can be calculated from the vertex normals through interpolation. These

surface normals can also be used to create normal maps for bump map

rendering.

Reducing the level of detail of geometry can also be accomplished based on the

plane equations of polygons or triangles. Near planar components can often be

merged and replaced by lower detail geometry without significantly changing the

silhouette of the overall geometric shape.

Collision detection is another area where plane equations are commonly used to

identify geometric relationships. The intersections of geometric primitives with

planes are typically used to determine the regions in contact or to calculate

when objects are going to collide.

When a polygonal surface animates the equations of the polygon planes change.

In particular a non-degenerate triangle is by definition planar and if a triangle

mesh animates the plane equations of the triangles change. As such these plane

equations have to be recalculated continuously when they are used to evaluate

geometric properties in real time. In this article the Intel Streaming SIMD

Extensions are used to optimize an algorithm that derives plane equations for

the triangles in a triangle mesh.

1.1 Previous Work

Weingartner and Klimovitski [15] describe methods for facet normal based

triangle culling and facet normal compression. The facet normals are derived

from the triangle vertices using the Intel Streaming SIMD Extensions.

1.2 Layout

Section 2 goes into the details of plane equations. Section 3 describes the basic

algorithm used to derive triangle plane equations from the triangle vertices.

Sections 4 describes how this algorithm can be optimized using the Intel

Streaming SIMD Extensions. The results of the optimizations are presented in

section 5 and several conclusions are drawn in section 6.

2. Plane Equations
A plane is a two-dimensional doubly ruled surface spanned by two linearly

independent vectors. The generalization of the plane to higher dimensions is

called a hyperplane. A plane divides space in two regions or half spaces. The

general equation of a plane in R3 is defined as follows.

ax + by + cz + d = 0

Where 'a', 'b' and 'c' describe a vector orthogonal to the plane, and 'd' is the

distance of the plane from the origin as a multiple of the vector (a, b, c). The

(x, y, z) in the above equation specify an arbitrary point in the plane. A plane

will be represented in code as follows.

struct Plane {
 float a, b, c, d;
};

It is often convenient to specify planes in so called Hessian normal form. This

form is obtained by dividing the plane equation by the length of the vector (a,

b, c) as follows [3].

ax + by + cz + d nxx + nyy + nzz + p =
 (a2 + b2 + c2)½

This is equivalent to making a2 + b2 + c2 = 1 in the general plane equation. In

other words the vector orthogonal to the plane is unit length and the plane

constant 'd' is adjusted appropriately. Given the Hessian normal form the point-

plane distance from the point (x, y, z) to a plane is given by the following

simple equation.

D = nxx + nyy + nzz + p

If the point (x, y, z) is in the half-space determined by the direction (nx, ny, nz)

then D > 0. If the point is in the other half-space then D < 0.

If three points in R3 are taken there may be a straight l ine in R3 which passes

through all three points. If such a line exists then these three points are said to

be collinear. Given three points in R3 which are not collinear, there is exactly

one plane which passes through all three points.

Two linearly independent vectors in the plane can be derived from three points

which are not collinear by subtracting one of the points from the other two

points. The cross product of the two linearly independent vectors can then be

used to obtain a vector orthogonal to the plane. This vector provides the 'a', 'b'

and 'c' in the general plane equation. The plane constant 'd' can be calculated

with the dot product of the vector orthogonal to the plane with one of the three

points.

When a plane equation is derived for a triangle specified by three points the

vector orthogonal to the plane can point in one of two directions. By

consistently specifying the points that define the triangle in counter-clockwise

order this vector can be made to always point into the half space at the front of

the triangle.

3. Deriving Triangle Planes
The routine presented here derives triangle plane equations for the triangles of

an arbitrary triangle mesh. The triangle mesh is specified as an array with

vertices and an array with indices. For each triangle this array with indices

contains three elements with the numbers of the vertices that create the

triangle. The three vertices of each triangle are specified in counter-clockwise

order. A vertex in the array with vertices is represented in code as follows.

struct Vec4 {
 float x, y, z, w;
};

struct Vertex {
 Vec4 position;
 Vec4 normal;
};

The vertex uses 4D vectors for the position and normal while 3D vectors may be

sufficient. However, using 4D vectors improves memory alignment and the last

component of the 4D vectors could also be used for other purposes. For some of

the vertex properties 3D vectors could be used and interleaved with new

properties, l ike 4 byte colors, to maintain alignment. However, simple 4D

vectors are used here to achieve good memory alignment with minimal

complexity.

Two linearly independent vectors span a plane. Two such linearly independent

vectors in the plane can be derived from three triangle vertices by subtracting

the position of one vertex from the positions of the other two vertices. From

these two vectors a new vector can be derived which is orthogonal to both

vectors and normal to the plane. This orthogonal vector is calculated by taking

the cross product of the two linearly independent vectors. Furthermore this

orthogonal vector is normalized to create a plane equation in Hessian normal

form. The plane distance from the origin along the normal vector is then

calculated with a dot product between the normal vector and the position of one

of the triangle vertices.

void DeriveTrianglePlanes(Plane *planes, const Vertex *verts, const int numVerts, const int *indices,
const int numIndices) {
 int i;

 for (i = 0; i < numIndices; i += 3, planes++) {
 const Vertex *v0, *v1, *v2;
 float d0[3], d1[3], n[3], s;

 v0 = verts + indices[i + 0];
 v1 = verts + indices[i + 1];
 v2 = verts + indices[i + 2];

 d0[0] = v1->position.x - v0->position.x;
 d0[1] = v1->position.y - v0->position.y;
 d0[2] = v1->position.z - v0->position.z;

 d1[0] = v2->position.x - v0->position.x;
 d1[1] = v2->position.y - v0->position.y;
 d1[2] = v2->position.z - v0->position.z;

 n[0] = d1[1] * d0[2] - d1[2] * d0[1];
 n[1] = d1[2] * d0[0] - d1[0] * d0[2];
 n[2] = d1[0] * d0[1] - d1[1] * d0[0];

 s = 1.0f / sqrt(n[0] * n[0] + n[1] * n[1] + n[2] * n[2]);

 planes->a = n[0] * s;
 planes->b = n[1] * s;
 planes->c = n[2] * s;
 planes->d = -(planes->a * v0->position.x + planes->b * v0->position.y + planes->c * v0-
>position.z);
 }
}

Although the mathematics involved in deriving plane equations for triangles is

not very complex the above routine can consume a considerable amount of time

when many triangles have to be processed. Fortunately the above routine can be

optimized using the Intel Streaming SIMD Extensions as shown in the next

section.

4. Deriving Triangle Planes With SSE
The best approach to SIMD for deriving triangle plane equations is to exploit

parallelism through increased throughput. The routine presented here will

operate on four triangles per iteration and the scalar instructions are replaced

with functionally equivalent SSE instructions. This requires a swizzle because

the vertex coordinates are stored per vertex and each triangle may reference

three arbitrary vertices while the coordinates of the twelve vertices used by four

triangles need to be grouped into SSE registers. The following SSE code swizzles

the coordinates of four vertices into three SSE registers.

movlps xmm1, [esi+ecx+VERTEX_POSITION_OFFSET+0] /* xmm1 = 0, 1, X, X */
movss xmm2, [esi+ecx+VERTEX_POSITION_OFFSET+8] /* xmm2 = 2, X, X, X */
movhps xmm1, [esi+ebx+VERTEX_POSITION_OFFSET+0] /* xmm1 = 0, 1, 4, 5 */
movhps xmm2, [esi+ebx+VERTEX_POSITION_OFFSET+8] /* xmm2 = 2, X, 6, X */
movlps xmm6, [esi+edx+VERTEX_POSITION_OFFSET+0] /* xmm6 = 8, 9, X, X */
movss xmm7, [esi+edx+VERTEX_POSITION_OFFSET+8] /* xmm6 = 10, X, X, X */
movhps xmm6, [esi+eax+VERTEX_POSITION_OFFSET+0] /* xmm6 = 8, 9, 12, 13 */
movhps xmm7, [esi+eax+VERTEX_POSITION_OFFSET+8] /* xmm6 = 10, X, 14, X */
movaps xmm0, xmm1 /* xmm0 = 0, 1, 4, 5 */
shufps xmm0, xmm6, R_SHUFFLE_PS(0, 2, 0, 2) /* xmm0 = 0, 4, 8, 12 */
shufps xmm1, xmm6, R_SHUFFLE_PS(1, 3, 1, 3) /* xmm1 = 1, 5, 9, 13 */
shufps xmm2, xmm7, R_SHUFFLE_PS(0, 2, 0, 2) /* xmm2 = 2, 6, 10, 14 */

After swizzling 12 vertices into SSE registers the scalar instructions can be

replaced with functionally equivalent SSE instructions.

To create plane equations in Hessian normal form the vector orthogonal to the

plane is divided by its length. This requires the calculation of a reciprocal

square root. The Intel SSE instruction set has an instruction to calculate the

reciprocal square root with 12 bits of precision. Using an approximation for the

reciprocal square root does not change the accuracy of the plane equation. It

only means the plane equation will not be in true Hessian normal form although

very close. If necessary a simple Newton-Rapson iteration can be used to

improve the accuracy of the reciprocal square root [16]. When the triangle plane

equations do not need to be in Hessian normal form the normalization of the

vector orthogonal to the plane can be completely omitted from the optimized

code which makes the routine even faster.

The complete routine for deriving triangle plane equations is l isted in appendix

A. The code works with any alignment but for the best performance the list with

vertices should be at least 16 byte aligned. The size of vertex objects (Vertex)

should be a multiple of 16 bytes such that consecutive vertices in an array are

all aligned on a 16 byte boundary. The routine currently assumes the size of the

vertex objects (Vertex) is a power of two. If this is not the case the shift with

VERTEX_SIZE_SHIFT must be replaced with an integer multiplication. However,

this is not recommended because integer multiplications are more expensive

than bitwise logical shifts.

5. Results
The routines have been tested on an Intel® Pentium® 4 Processor on 130nm

Technology and an Intel® Pentium® 4 Processor on 90nm Technology. The

routines operated on a list of 1024 triangles using 1024 vertices. The total

number of clock cycles and the number of clock cycles per triangle for each

routine on the different CPUs are listed in the following table.

Hot Cache Clock Cycle Counts

Routine
P4 130nm

total
clock cycles

P4 130nm clock
cycles

per element

P4 90nm
total

clock cycles

P4 90nm clock
cycles

per element

DeriveTrianglePlanes (C) 141192 138 149483 146

DeriveTrianglePlanes (SSE)

34080 33 36128 35

6. Conclusion
The plane equations of triangles are often used to evaluate geometric

relationships in real-time applications. When a triangle mesh animates the plane

equations of the triangles change. Deriving the triangle plane equations from

the animating triangle vertices can be performance critical in such applications.

Deriving triangle plane equations from triangle vertices can be optimized using

the Intel Streaming SIMD Extensions. The optimized algorithm presented here is

well over four times faster than the commonly used algorithm in C.

7. References

1. Solid Mensuration with Proofs - §4 - Lines and Planes in Space

W. F. Kern, J. R. Bland

2nd ed., New York: Wiley, pp. 9-12, 1948

2. A New Approach to the Shaded Picture Problem

M. E. Newell, R. G. Newell, T. L. Sancha

In Proceedings of the ACM National Conference, pp. 443-450, 1972

3. VNR Concise Encyclopedia of Mathematics, 2nd Edition

W. Gellert, S. Gottwald, M. Hellwich, H. Kästner, H. Künstner (Eds.).

New York: Van Nostrand Reinhold, pp. 539-543, 1989

Available Online:

http://www.amazon.com/exec/obidos/ASIN/0442205902/weisstein-20

4. Newell's Method for Computing the Plane Equation of a Polygon

Fil ippo Tampieri

Graphics Gems III, David Kirk, Academic Press, pp. 231-232, 1992

Available Online: http://www.graphicsgems.org/

5. Fast Polygon Area and Newell Normal Computation

Daniel Sunday

Journal of Graphics Tools, vol. 7, no. 2, pp. 9-13, 2002

http://www.amazon.com/exec/obidos/ASIN/0442205902/weisstein-20
http://www.graphicsgems.org/

Available Online: http://www.acm.org/jgt/papers/Sunday02/

6. CRC Standard Mathematical Tables and Formulae, 31st Edition

Daniel Zwillinger

Chapman & Hall/CRC, 31st edition, November 27, 2002

Available Online:

http://www.amazon.com/exec/obidos/ASIN/1584882913/weisstein-20

7. Geometric Tools For Computer Graphics - 12.6 Plane Through Three Points

Philip J. Schneider, David H. Eberly

Morgan Kaufmann Publishers, pp. 669-670, 2003 by Elsevier Science

8. Computer Graphics

Donald Hearn, M. Pauline Baker

Prentice Hall International Inc, pp. 523, 1994

9. Computing Surface Normals for 3D Models

Andrew S. Glassner, ed.

Graphics Gems, Academic Press, pp. 562-566, 1990.

Available Online: http://www.graphicsgems.org/

10. Building Vertex Normals from an Unstructured Polygon List

Andrew S. Glassner

Paul S. Heckbert, ed.

Graphics Gems IV, Academic Press, pp. 60-73, 1994.

Available Online: http://www.graphicsgems.org/

11. Computing Vertex Normals from Polygonal Facets

Grit Thürmer, Charles A. Wüthrich

Journal of Graphics Tools, vol. 3, no. 1, pp. 43-46, 1998.

Available Online: http://portal.acm.org/citation.cfm?id=317263

12. Weights for Computing Vertex Normals from Facet Normals

Nelson Max

Journal of Graphics Tools, vol. 4, no. 2, pp. 1-6, 1999.

Available Online: http://portal.acm.org/citation.cfm?id=334710

13. Cartoon Rendering: Real-time Silhouette Edge Detection and Rendering

Carl S. Marshall

Game Programming Gems 2, Mark Deloura (editor), Charles River Media,

2001

14. Practical and Robust Stenciled Shadow Volumes for Hardware-Accelerated

Rendering

Cass Everitt, Mark J. Kilgard

http://www.acm.org/jgt/papers/Sunday02/
http://www.amazon.com/exec/obidos/ASIN/1584882913/weisstein-20
http://www.graphicsgems.org/
http://www.graphicsgems.org/
http://portal.acm.org/citation.cfm?id=317263
http://portal.acm.org/citation.cfm?id=334710

nVidia Corporation, 2002

Available Online:

http://developer.nvidia.com/object/robust_shadow_volumes.html

15. Power Programming with the Streaming SIMD Extensions 2

Markus. Weingartner, Alex. Klimovitski

Intel Developer Forum Conference, Spring 2001

16. Increasing the Accuracy of the Results from the Reciprocal and Reciprocal

Square Root Instructions using the Newton-Raphson Method

Intel

Application Note 803, order nr. 243637-002 version 2.1, January 1999

Available Online: http://www.intel.com/cd/ids/developer/asmo-

na/eng/microprocessors/ia32/pentium4/resources/appnotes/19061.htm

Appendix A
/*
 SSE Optimized Calculation of Triangle Plane Equations
 Copyright (C) 2005 Id Software, Inc.
 Written by J.M.P. van Waveren

 This code is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This code is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.
*/

#define assert_16_byte_aligned(pointer) assert((((UINT_PTR)(pointer))&15) == 0);
#define ALIGN16(x) __declspec(align(16)) x
#define ALIGN4_INIT1(X, I) ALIGN16(static X[4] = { I, I, I, I })
#define R_SHUFFLE_PS(x, y, z, w) (((w) & 3) << 6 | ((z) & 3) << 4 | ((y) & 3) << 2 |
((x) & 3))

#define IEEE_SP_ZERO 0
#define IEEE_SP_SIGN ((unsigned long) (1 << 31))

ALIGN4_INIT1(unsigned long SIMD_SP_signBit, IEEE_SP_SIGN);

struct Vec4 {
 float x, y, z, w;
};

struct Vertex {
 Vec4 position;
 Vec4 normal;
};

#define VERTEX_SIZE_SHIFT 5
#define VERTEX_SIZE (8*4) // sizeof(Vertex)
#define VERTEX_POSITION_OFFSET (0*4) // offsetof(Vertex, position)
#define VERTEX_NORMAL_OFFSET (4*4) // offsetof(Vertex, normal)

void DeriveTrianglePlanes(Plane *planes, const Vertex *verts, const int numVerts, const int *indices,
const int numIndices) {
 int d, a;
 int n = numIndexes / 3;
 ALIGN16(float x0[4]);
 ALIGN16(float x1[4]);
 ALIGN16(float x2[4]);

 __asm {

http://developer.nvidia.com/object/robust_shadow_volumes.html
http://www.intel.com/cd/ids/developer/asmo-na/eng/microprocessors/ia32/pentium4/resources/appnotes/19061.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/microprocessors/ia32/pentium4/resources/appnotes/19061.htm

 push ebx
 mov eax, n
 shl eax, 4
 mov esi, verts
 mov edi, indexes
 mov edx, planes

 add edx, eax
 neg eax

 mov d, edx

 add eax, 4*16
 jge done4

 loopPlane4:
 mov a, eax

 mov ecx, [edi+0*12+0]
 shl ecx, VERTEX_SIZE_SHIFT
 mov ebx, [edi+1*12+0]
 shl ebx, VERTEX_SIZE_SHIFT
 mov edx, [edi+2*12+0]
 shl edx, VERTEX_SIZE_SHIFT
 mov eax, [edi+3*12+0]
 shl eax, VERTEX_SIZE_SHIFT

 movlps xmm4, [esi+ecx+VERTEX_POSITION_OFFSET+0] /* xmm4 = 0, 1, X, X */
 movss xmm5, [esi+ecx+VERTEX_POSITION_OFFSET+8] /* xmm5 = 2, X, X, X */
 movhps xmm4, [esi+ebx+VERTEX_POSITION_OFFSET+0] /* xmm4 = 0, 1, 4, 5 */
 movhps xmm5, [esi+ebx+VERTEX_POSITION_OFFSET+8] /* xmm5 = 2, X, 6, X */
 movlps xmm6, [esi+edx+VERTEX_POSITION_OFFSET+0] /* xmm6 = 8, 9, X, X */
 movss xmm7, [esi+edx+VERTEX_POSITION_OFFSET+8] /* xmm6 = 10, X, X, X */
 movhps xmm6, [esi+eax+VERTEX_POSITION_OFFSET+0] /* xmm6 = 8, 9, 12, 13 */
 movhps xmm7, [esi+eax+VERTEX_POSITION_OFFSET+8] /* xmm6 = 10, X, 14, X */
 movaps xmm3, xmm4 /* xmm3 = 0, 1, 4, 5 */
 shufps xmm3, xmm6, R_SHUFFLE_PS(0, 2, 0, 2) /* xmm3 = 0, 4, 8, 12 */
 shufps xmm4, xmm6, R_SHUFFLE_PS(1, 3, 1, 3) /* xmm4 = 1, 5, 9, 13 */
 shufps xmm5, xmm7, R_SHUFFLE_PS(0, 2, 0, 2) /* xmm5 = 2, 6, 10, 14 */

 mov ecx, [edi+0*12+4]
 shl ecx, VERTEX_SIZE_SHIFT
 mov ebx, [edi+1*12+4]
 shl ebx, VERTEX_SIZE_SHIFT
 mov edx, [edi+2*12+4]
 shl edx, VERTEX_SIZE_SHIFT
 mov eax, [edi+3*12+4]
 shl eax, VERTEX_SIZE_SHIFT

 movaps x0, xmm3
 movaps x1, xmm4
 movaps x2, xmm5

 movlps xmm1, [esi+ecx+VERTEX_POSITION_OFFSET+0] /* xmm1 = 0, 1, X, X */
 movss xmm2, [esi+ecx+VERTEX_POSITION_OFFSET+8] /* xmm2 = 2, X, X, X */
 movhps xmm1, [esi+ebx+VERTEX_POSITION_OFFSET+0] /* xmm1 = 0, 1, 4, 5 */
 movhps xmm2, [esi+ebx+VERTEX_POSITION_OFFSET+8] /* xmm2 = 2, X, 6, X */
 movlps xmm6, [esi+edx+VERTEX_POSITION_OFFSET+0] /* xmm6 = 8, 9, X, X */
 movss xmm7, [esi+edx+VERTEX_POSITION_OFFSET+8] /* xmm6 = 10, X, X, X */
 movhps xmm6, [esi+eax+VERTEX_POSITION_OFFSET+0] /* xmm6 = 8, 9, 12, 13 */
 movhps xmm7, [esi+eax+VERTEX_POSITION_OFFSET+8] /* xmm6 = 10, X, 14, X */
 movaps xmm0, xmm1 /* xmm0 = 0, 1, 4, 5 */
 shufps xmm0, xmm6, R_SHUFFLE_PS(0, 2, 0, 2) /* xmm0 = 0, 4, 8, 12 */
 shufps xmm1, xmm6, R_SHUFFLE_PS(1, 3, 1, 3) /* xmm1 = 1, 5, 9, 13 */
 shufps xmm2, xmm7, R_SHUFFLE_PS(0, 2, 0, 2) /* xmm2 = 2, 6, 10, 14 */

 mov ecx, [edi+0*12+8]
 shl ecx, VERTEX_SIZE_SHIFT
 mov ebx, [edi+1*12+8]
 shl ebx, VERTEX_SIZE_SHIFT
 mov edx, [edi+2*12+8]
 shl edx, VERTEX_SIZE_SHIFT
 mov eax, [edi+3*12+8]
 shl eax, VERTEX_SIZE_SHIFT

 subps xmm0, xmm3
 subps xmm1, xmm4
 subps xmm2, xmm5

 movlps xmm4, [esi+ecx+VERTEX_POSITION_OFFSET+0] /* xmm4 = 0, 1, X, X */
 movss xmm5, [esi+ecx+VERTEX_POSITION_OFFSET+8] /* xmm5 = 2, X, X, X */

 movhps xmm4, [esi+ebx+VERTEX_POSITION_OFFSET+0] /* xmm4 = 0, 1, 4, 5 */
 movhps xmm5, [esi+ebx+VERTEX_POSITION_OFFSET+8] /* xmm5 = 2, X, 6, X */
 movlps xmm6, [esi+edx+VERTEX_POSITION_OFFSET+0] /* xmm6 = 8, 9, X, X */
 movss xmm7, [esi+edx+VERTEX_POSITION_OFFSET+8] /* xmm6 = 10, X, X, X */
 movhps xmm6, [esi+eax+VERTEX_POSITION_OFFSET+0] /* xmm6 = 8, 9, 12, 13 */
 movhps xmm7, [esi+eax+VERTEX_POSITION_OFFSET+8] /* xmm6 = 10, X, 14, X */
 movaps xmm3, xmm4 /* xmm3 = 0, 1, 4, 5 */
 shufps xmm3, xmm6, R_SHUFFLE_PS(0, 2, 0, 2) /* xmm3 = 0, 4, 8, 12 */
 shufps xmm4, xmm6, R_SHUFFLE_PS(1, 3, 1, 3) /* xmm4 = 1, 5, 9, 13 */
 shufps xmm5, xmm7, R_SHUFFLE_PS(0, 2, 0, 2) /* xmm5 = 2, 6, 10, 14 */

 mov eax, a
 mov edx, d
 add edi, 4*12

 subps xmm3, x0
 subps xmm4, x1
 subps xmm5, x2

 movaps xmm6, xmm4
 mulps xmm6, xmm2
 movaps xmm7, xmm5
 mulps xmm7, xmm1
 subps xmm6, xmm7

 mulps xmm5, xmm0
 mulps xmm2, xmm3
 subps xmm5, xmm2

 mulps xmm3, xmm1
 mulps xmm4, xmm0
 subps xmm3, xmm4

 add eax, 4*16

 movaps xmm0, xmm6
 mulps xmm6, xmm6
 movaps xmm1, xmm5
 mulps xmm5, xmm5
 movaps xmm2, xmm3
 mulps xmm3, xmm3

 addps xmm3, xmm5
 addps xmm3, xmm6
 rsqrtps xmm3, xmm3

 mulps xmm0, xmm3
 mulps xmm1, xmm3
 mulps xmm2, xmm3

 movaps xmm4, x0
 movaps xmm5, x1
 movaps xmm6, x2

 mulps xmm4, xmm0
 mulps xmm5, xmm1
 mulps xmm6, xmm2

 addps xmm4, xmm5
 addps xmm4, xmm6
 xorps xmm4, SIMD_SP_signBit

 // transpose xmm0, xmm1, xmm2, xmm4 to memory
 movaps xmm7, xmm0
 movaps xmm5, xmm2

 unpcklps xmm0, xmm1
 unpcklps xmm2, xmm4

 movlps [edx+eax-8*16+0], xmm0
 movlps [edx+eax-8*16+8], xmm2

 movhps [edx+eax-7*16+0], xmm0
 movhps [edx+eax-7*16+8], xmm2

 unpckhps xmm7, xmm1
 unpckhps xmm5, xmm4

 movlps [edx+eax-6*16+0], xmm7
 movlps [edx+eax-6*16+8], xmm5

 movhps [edx+eax-5*16+0], xmm7
 movhps [edx+eax-5*16+8], xmm5

 jle loopPlane4

 done4:

 sub eax, 4*16
 jge done

 loopPlane1:
 mov ecx, [edi+0]
 shl ecx, VERTEX_SIZE_SHIFT
 mov ebx, [edi+4]
 shl ebx, VERTEX_SIZE_SHIFT
 mov edx, [edi+8]
 shl edx, VERTEX_SIZE_SHIFT

 movss xmm0, [esi+ebx+VERTEX_POSITION_OFFSET+0]
 subss xmm0, [esi+ecx+VERTEX_POSITION_OFFSET+0]
 movss xmm1, [esi+ebx+VERTEX_POSITION_OFFSET+4]
 subss xmm1, [esi+ecx+VERTEX_POSITION_OFFSET+4]
 movss xmm2, [esi+ebx+VERTEX_POSITION_OFFSET+8]
 subss xmm2, [esi+ecx+VERTEX_POSITION_OFFSET+8]

 movss xmm3, [esi+edx+VERTEX_POSITION_OFFSET+0]
 subss xmm3, [esi+ecx+VERTEX_POSITION_OFFSET+0]
 movss xmm4, [esi+edx+VERTEX_POSITION_OFFSET+4]
 subss xmm4, [esi+ecx+VERTEX_POSITION_OFFSET+4]
 movss xmm5, [esi+edx+VERTEX_POSITION_OFFSET+8]
 subss xmm5, [esi+ecx+VERTEX_POSITION_OFFSET+8]

 movss xmm6, xmm4
 mulss xmm6, xmm2
 movss xmm7, xmm5
 mulss xmm7, xmm1
 subss xmm6, xmm7

 add edi, 1*12

 mulss xmm5, xmm0
 mulss xmm2, xmm3
 subss xmm5, xmm2

 mulss xmm3, xmm1
 mulss xmm4, xmm0
 subss xmm3, xmm4

 mov edx, d

 movss xmm0, xmm6
 mulss xmm6, xmm6
 movss xmm1, xmm5
 mulss xmm5, xmm5
 movss xmm2, xmm3
 mulss xmm3, xmm3

 add eax, 1*16

 addss xmm3, xmm5
 addss xmm3, xmm6
 rsqrtss xmm3, xmm3

 mulss xmm0, xmm3
 mulss xmm1, xmm3
 mulss xmm2, xmm3

 movss [edx+eax-1*16+0], xmm0
 movss [edx+eax-1*16+4], xmm1
 movss [edx+eax-1*16+8], xmm2

 mulss xmm0, [esi+ecx+VERTEX_POSITION_OFFSET+0]
 mulss xmm1, [esi+ecx+VERTEX_POSITION_OFFSET+4]
 mulss xmm2, [esi+ecx+VERTEX_POSITION_OFFSET+8]

 xorps xmm0, SIMD_SP_firstSignBit
 subss xmm0, xmm1
 subss xmm0, xmm2
 movss [edx+eax-1*16+12], xmm0

 jl loopPlane1

 done:
 pop ebx
 }
}

	Abstract
	Introduction
	Previous Work
	Layout

	Plane Equations
	Deriving Triangle Planes
	Deriving Triangle Planes With SSE
	Results
	Conclusion
	References
	Appendix A
	Deriving Triangle Plane Equations.pdf
	Abstract
	1. Introduction
	1.1 Previous Work
	1.2 Layout

	2. Plane Equations
	3. Deriving Triangle Planes
	4. Deriving Triangle Planes With SSE
	5. Results
	6. Conclusion
	7. References
	Appendix A

