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Abstract  
An optimized routine to derive triangle plane equations is presented. The Intel 

Streaming SIMD Extensions are used to exploit parallelism through increased 

throughput. The optimized routine is well over four times faster than the 

commonly used implementation in C on a Pentium 4.  

1. Introduction  
A plane divides space in two regions or half spaces and is a well known 

geometric primitive that is commonly used in many applications. Planes are 

often used to describe geometric properties and to define geometric 

relationships. Many applications require such geometric relationships to be 

evaluated in real time.  

The equations of planes are often used in real-time rendering applications. 

Backface culling is the process of determining the polygons that face away from 

the viewer and as such should not be rendered because the polygons are only 

considered visible from one side. The plane equation of a polygon can be used to 

cull a polygon that faces away from the viewer by determining whether or not 

the viewer is in the half space at the front of the polygon [8].  

Several rendering algorithms require the detection of silhouette edges based on 

the facing of triangles. The construction of shadow volumes uses the triangle 

plane equations to find the triangles that face towards or away from the light 

source and to determine the shadow silhouette of the geometry [14]. Silhouette 

edge detection based on plane equations is also used for cartoon rendering [13].  

Many shading algorithms among which Gouraud and Phong shading use the 

surface normal vectors at vertex positions of polygonal or triangle meshes [8]. A 

vertex normal can be calculated by averaging or weighing the plane normal 

vectors of all the polygons or triangles that use the vertex [9,10,11,12]. Surface 

normals can be calculated from the vertex normals through interpolation. These 

surface normals can also be used to create normal maps for bump map 

rendering.  

Reducing the level of detail of geometry can also be accomplished based on the 

plane equations of polygons or triangles. Near planar components can often be 

merged and replaced by lower detail geometry without significantly changing the 

silhouette of the overall geometric shape.  



Collision detection is another area where plane equations are commonly used to 

identify geometric relationships. The intersections of geometric primitives with 

planes are typically used to determine the regions in contact or to calculate 

when objects are going to collide.  

When a polygonal surface animates the equations of the polygon planes change. 

In particular a non-degenerate triangle is by definition planar and if a triangle 

mesh animates the plane equations of the triangles change. As such these plane 

equations have to be recalculated continuously when they are used to evaluate 

geometric properties in real time. In this article the Intel Streaming SIMD 

Extensions are used to optimize an algorithm that derives plane equations for 

the triangles in a triangle mesh.  

1.1 Previous Work  

Weingartner and Klimovitski [15] describe methods for facet normal based 

triangle culling and facet normal compression. The facet normals are derived 

from the triangle vertices using the Intel Streaming SIMD Extensions.  

1.2 Layout  

Section 2 goes into the details of plane equations. Section 3 describes the basic 

algorithm used to derive triangle plane equations from the triangle vertices. 

Sections 4 describes how this algorithm can be optimized using the Intel 

Streaming SIMD Extensions. The results of the optimizations are presented in 

section 5 and several conclusions are drawn in section 6.  

2. Plane Equations  
A plane is a two-dimensional doubly ruled surface spanned by two linearly 

independent vectors. The generalization of the plane to higher dimensions is 

called a hyperplane. A plane divides space in two regions or half spaces. The 

general equation of a plane in R3 is defined as follows.  

ax + by + cz + d = 0  

Where 'a', 'b' and 'c' describe a vector orthogonal to the plane, and 'd' is the 

distance of the plane from the origin as a multiple of the vector (a, b, c). The 

(x, y, z) in the above equation specify an arbitrary point in the plane. A plane 

will be represented in code as follows.  

struct Plane { 
    float   a, b, c, d; 
}; 

It is often convenient to specify planes in so called Hessian normal form. This 

form is obtained by dividing the plane equation by the length of the vector (a, 

b, c) as follows [3].  

 



ax + by + cz + d nxx + nyy + nzz + p = 
   (a2 + b2 + c2)½ 

This is equivalent to making a2 + b2 + c2 = 1 in the general plane equation. In 

other words the vector orthogonal to the plane is unit length and the plane 

constant 'd' is adjusted appropriately. Given the Hessian normal form the point-

plane distance from the point (x, y, z) to a plane is given by the following 

simple equation.  

D = nxx + nyy + nzz + p  

If the point (x, y, z) is in the half-space determined by the direction (nx, ny, nz) 

then D > 0. If the point is in the other half-space then D < 0.  

If three points in R3 are taken there may be a straight l ine in R3 which passes 

through all three points. If such a line exists then these three points are said to 

be collinear. Given three points in R3 which are not collinear, there is exactly 

one plane which passes through all three points.  

Two linearly independent vectors in the plane can be derived from three points 

which are not collinear by subtracting one of the points from the other two 

points. The cross product of the two linearly independent vectors can then be 

used to obtain a vector orthogonal to the plane. This vector provides the 'a', 'b' 

and 'c' in the general plane equation. The plane constant 'd' can be calculated 

with the dot product of the vector orthogonal to the plane with one of the three 

points.  

When a plane equation is derived for a triangle specified by three points the 

vector orthogonal to the plane can point in one of two directions. By 

consistently specifying the points that define the triangle in counter-clockwise 

order this vector can be made to always point into the half space at the front of 

the triangle.  

3. Deriving Triangle Planes  
The routine presented here derives triangle plane equations for the triangles of 

an arbitrary triangle mesh. The triangle mesh is specified as an array with 

vertices and an array with indices. For each triangle this array with indices 

contains three elements with the numbers of the vertices that create the 

triangle. The three vertices of each triangle are specified in counter-clockwise 

order. A vertex in the array with vertices is represented in code as follows.  

struct Vec4 { 
    float   x, y, z, w; 
}; 
 
struct Vertex { 
    Vec4    position; 
    Vec4    normal; 
}; 



The vertex uses 4D vectors for the position and normal while 3D vectors may be 

sufficient. However, using 4D vectors improves memory alignment and the last 

component of the 4D vectors could also be used for other purposes. For some of 

the vertex properties 3D vectors could be used and interleaved with new 

properties, l ike 4 byte colors, to maintain alignment. However, simple 4D 

vectors are used here to achieve good memory alignment with minimal 

complexity.  

Two linearly independent vectors span a plane. Two such linearly independent 

vectors in the plane can be derived from three triangle vertices by subtracting 

the position of one vertex from the positions of the other two vertices. From 

these two vectors a new vector can be derived which is orthogonal to both 

vectors and normal to the plane. This orthogonal vector is calculated by taking 

the cross product of the two linearly independent vectors. Furthermore this 

orthogonal vector is normalized to create a plane equation in Hessian normal 

form. The plane distance from the origin along the normal vector is then 

calculated with a dot product between the normal vector and the position of one 

of the triangle vertices.  

void DeriveTrianglePlanes( Plane *planes, const Vertex *verts, const int numVerts, const int *indices, 
const int numIndices ) { 
    int i; 
 
    for ( i = 0; i < numIndices; i += 3, planes++ ) { 
        const Vertex *v0, *v1, *v2; 
        float d0[3], d1[3], n[3], s; 
 
        v0 = verts + indices[i + 0]; 
        v1 = verts + indices[i + 1]; 
        v2 = verts + indices[i + 2]; 
 
        d0[0] = v1->position.x - v0->position.x; 
        d0[1] = v1->position.y - v0->position.y; 
        d0[2] = v1->position.z - v0->position.z; 
 
        d1[0] = v2->position.x - v0->position.x; 
        d1[1] = v2->position.y - v0->position.y; 
        d1[2] = v2->position.z - v0->position.z; 
 
        n[0] = d1[1] * d0[2] - d1[2] * d0[1]; 
        n[1] = d1[2] * d0[0] - d1[0] * d0[2]; 
        n[2] = d1[0] * d0[1] - d1[1] * d0[0]; 
 
        s = 1.0f / sqrt( n[0] * n[0] + n[1] * n[1] + n[2] * n[2] ); 
 
        planes->a = n[0] * s; 
        planes->b = n[1] * s; 
        planes->c = n[2] * s; 
        planes->d = -( planes->a * v0->position.x + planes->b * v0->position.y + planes->c * v0-
>position.z ); 
    } 
} 

Although the mathematics involved in deriving plane equations for triangles is 

not very complex the above routine can consume a considerable amount of time 

when many triangles have to be processed. Fortunately the above routine can be 

optimized using the Intel Streaming SIMD Extensions as shown in the next 

section.  



4. Deriving Triangle Planes With SSE  
The best approach to SIMD for deriving triangle plane equations is to exploit 

parallelism through increased throughput. The routine presented here will 

operate on four triangles per iteration and the scalar instructions are replaced 

with functionally equivalent SSE instructions. This requires a swizzle because 

the vertex coordinates are stored per vertex and each triangle may reference 

three arbitrary vertices while the coordinates of the twelve vertices used by four 

triangles need to be grouped into SSE registers. The following SSE code swizzles 

the coordinates of four vertices into three SSE registers.  

movlps      xmm1, [esi+ecx+VERTEX_POSITION_OFFSET+0]     /* xmm1 =  0,  1,  X,  X */ 
movss       xmm2, [esi+ecx+VERTEX_POSITION_OFFSET+8]     /* xmm2 =  2,  X,  X,  X */ 
movhps      xmm1, [esi+ebx+VERTEX_POSITION_OFFSET+0]     /* xmm1 =  0,  1,  4,  5 */ 
movhps      xmm2, [esi+ebx+VERTEX_POSITION_OFFSET+8]     /* xmm2 =  2,  X,  6,  X */ 
movlps      xmm6, [esi+edx+VERTEX_POSITION_OFFSET+0]     /* xmm6 =  8,  9,  X,  X */ 
movss       xmm7, [esi+edx+VERTEX_POSITION_OFFSET+8]     /* xmm6 = 10,  X,  X,  X */ 
movhps      xmm6, [esi+eax+VERTEX_POSITION_OFFSET+0]     /* xmm6 =  8,  9, 12, 13 */ 
movhps      xmm7, [esi+eax+VERTEX_POSITION_OFFSET+8]     /* xmm6 = 10,  X, 14,  X */ 
movaps      xmm0, xmm1                                   /* xmm0 =  0,  1,  4,  5 */ 
shufps      xmm0, xmm6, R_SHUFFLE_PS( 0, 2, 0, 2 )       /* xmm0 =  0,  4,  8, 12 */ 
shufps      xmm1, xmm6, R_SHUFFLE_PS( 1, 3, 1, 3 )       /* xmm1 =  1,  5,  9, 13 */ 
shufps      xmm2, xmm7, R_SHUFFLE_PS( 0, 2, 0, 2 )       /* xmm2 =  2,  6, 10, 14 */ 

After swizzling 12 vertices into SSE registers the scalar instructions can be 

replaced with functionally equivalent SSE instructions.  

To create plane equations in Hessian normal form the vector orthogonal to the 

plane is divided by its length. This requires the calculation of a reciprocal 

square root. The Intel SSE instruction set has an instruction to calculate the 

reciprocal square root with 12 bits of precision. Using an approximation for the 

reciprocal square root does not change the accuracy of the plane equation. It 

only means the plane equation will not be in true Hessian normal form although 

very close. If necessary a simple Newton-Rapson iteration can be used to 

improve the accuracy of the reciprocal square root [16]. When the triangle plane 

equations do not need to be in Hessian normal form the normalization of the 

vector orthogonal to the plane can be completely omitted from the optimized 

code which makes the routine even faster.  

The complete routine for deriving triangle plane equations is l isted in appendix 

A. The code works with any alignment but for the best performance the list with 

vertices should be at least 16 byte aligned. The size of vertex objects (Vertex) 

should be a multiple of 16 bytes such that consecutive vertices in an array are 

all aligned on a 16 byte boundary. The routine currently assumes the size of the 

vertex objects (Vertex) is a power of two. If this is not the case the shift with 

VERTEX_SIZE_SHIFT must be replaced with an integer multiplication. However, 

this is not recommended because integer multiplications are more expensive 

than bitwise logical shifts.  

5. Results  
The routines have been tested on an Intel® Pentium® 4 Processor on 130nm 

Technology and an Intel® Pentium® 4 Processor on 90nm Technology. The 

routines operated on a list of 1024 triangles using 1024 vertices. The total 



number of clock cycles and the number of clock cycles per triangle for each 

routine on the different CPUs are listed in the following table.  

Hot Cache Clock Cycle Counts 

Routine 
P4 130nm 

total   
clock cycles   

P4 130nm clock 
cycles   

per element 

P4 90nm 
total   

clock cycles   

P4 90nm clock 
cycles   

per element 

DeriveTrianglePlanes (C)   141192 138 149483 146 

DeriveTrianglePlanes (SSE) 
  

34080 33 36128 35 

6. Conclusion  
The plane equations of triangles are often used to evaluate geometric 

relationships in real-time applications. When a triangle mesh animates the plane 

equations of the triangles change. Deriving the triangle plane equations from 

the animating triangle vertices can be performance critical in such applications.  

Deriving triangle plane equations from triangle vertices can be optimized using 

the Intel Streaming SIMD Extensions. The optimized algorithm presented here is 

well over four times faster than the commonly used algorithm in C.  
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Appendix A  
/* 
    SSE Optimized Calculation of Triangle Plane Equations 
    Copyright (C) 2005 Id Software, Inc. 
    Written by J.M.P. van Waveren 
 
    This code is free software; you can redistribute it and/or 
    modify it under the terms of the GNU Lesser General Public 
    License as published by the Free Software Foundation; either 
    version 2.1 of the License, or (at your option) any later version. 
 
    This code is distributed in the hope that it will be useful, 
    but WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
    Lesser General Public License for more details. 
*/ 
 
#define assert_16_byte_aligned( pointer )   assert( (((UINT_PTR)(pointer))&15) == 0 ); 
#define ALIGN16( x )                        __declspec(align(16)) x 
#define ALIGN4_INIT1( X, I )                ALIGN16( static X[4] = { I, I, I, I } ) 
#define R_SHUFFLE_PS( x, y, z, w )          (( (w) & 3 ) << 6 | ( (z) & 3 ) << 4 | ( (y) & 3 ) << 2 | 
( (x) & 3 )) 
 
#define IEEE_SP_ZERO                        0 
#define IEEE_SP_SIGN                        ((unsigned long) ( 1 << 31 )) 
 
ALIGN4_INIT1( unsigned long SIMD_SP_signBit, IEEE_SP_SIGN ); 
 
struct Vec4 { 
    float   x, y, z, w; 
}; 
 
struct Vertex { 
    Vec4    position; 
    Vec4    normal; 
}; 
 
#define VERTEX_SIZE_SHIFT                   5 
#define VERTEX_SIZE                         (8*4)       // sizeof( Vertex ) 
#define VERTEX_POSITION_OFFSET              (0*4)       // offsetof( Vertex, position ) 
#define VERTEX_NORMAL_OFFSET                (4*4)       // offsetof( Vertex, normal ) 
 
void DeriveTrianglePlanes( Plane *planes, const Vertex *verts, const int numVerts, const int *indices, 
const int numIndices ) { 
    int d, a; 
    int n = numIndexes / 3; 
    ALIGN16( float x0[4] ); 
    ALIGN16( float x1[4] ); 
    ALIGN16( float x2[4] ); 
 
    __asm { 

http://developer.nvidia.com/object/robust_shadow_volumes.html
http://www.intel.com/cd/ids/developer/asmo-na/eng/microprocessors/ia32/pentium4/resources/appnotes/19061.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/microprocessors/ia32/pentium4/resources/appnotes/19061.htm


        push        ebx 
        mov         eax, n 
        shl         eax, 4 
        mov         esi, verts 
        mov         edi, indexes 
        mov         edx, planes 
 
        add         edx, eax 
        neg         eax 
 
        mov         d, edx 
 
        add         eax, 4*16 
        jge         done4 
 
    loopPlane4: 
        mov         a, eax 
 
        mov         ecx, [edi+0*12+0] 
        shl         ecx, VERTEX_SIZE_SHIFT 
        mov         ebx, [edi+1*12+0] 
        shl         ebx, VERTEX_SIZE_SHIFT 
        mov         edx, [edi+2*12+0] 
        shl         edx, VERTEX_SIZE_SHIFT 
        mov         eax, [edi+3*12+0] 
        shl         eax, VERTEX_SIZE_SHIFT 
 
        movlps      xmm4, [esi+ecx+VERTEX_POSITION_OFFSET+0]     /* xmm4 =  0,  1,  X,  X */ 
        movss       xmm5, [esi+ecx+VERTEX_POSITION_OFFSET+8]     /* xmm5 =  2,  X,  X,  X */ 
        movhps      xmm4, [esi+ebx+VERTEX_POSITION_OFFSET+0]     /* xmm4 =  0,  1,  4,  5 */ 
        movhps      xmm5, [esi+ebx+VERTEX_POSITION_OFFSET+8]     /* xmm5 =  2,  X,  6,  X */ 
        movlps      xmm6, [esi+edx+VERTEX_POSITION_OFFSET+0]     /* xmm6 =  8,  9,  X,  X */ 
        movss       xmm7, [esi+edx+VERTEX_POSITION_OFFSET+8]     /* xmm6 = 10,  X,  X,  X */ 
        movhps      xmm6, [esi+eax+VERTEX_POSITION_OFFSET+0]     /* xmm6 =  8,  9, 12, 13 */ 
        movhps      xmm7, [esi+eax+VERTEX_POSITION_OFFSET+8]     /* xmm6 = 10,  X, 14,  X */ 
        movaps      xmm3, xmm4                                   /* xmm3 =  0,  1,  4,  5 */ 
        shufps      xmm3, xmm6, R_SHUFFLE_PS( 0, 2, 0, 2 )       /* xmm3 =  0,  4,  8, 12 */ 
        shufps      xmm4, xmm6, R_SHUFFLE_PS( 1, 3, 1, 3 )       /* xmm4 =  1,  5,  9, 13 */ 
        shufps      xmm5, xmm7, R_SHUFFLE_PS( 0, 2, 0, 2 )       /* xmm5 =  2,  6, 10, 14 */ 
 
        mov         ecx, [edi+0*12+4] 
        shl         ecx, VERTEX_SIZE_SHIFT 
        mov         ebx, [edi+1*12+4] 
        shl         ebx, VERTEX_SIZE_SHIFT 
        mov         edx, [edi+2*12+4] 
        shl         edx, VERTEX_SIZE_SHIFT 
        mov         eax, [edi+3*12+4] 
        shl         eax, VERTEX_SIZE_SHIFT 
 
        movaps      x0, xmm3 
        movaps      x1, xmm4 
        movaps      x2, xmm5 
 
        movlps      xmm1, [esi+ecx+VERTEX_POSITION_OFFSET+0]     /* xmm1 =  0,  1,  X,  X */ 
        movss       xmm2, [esi+ecx+VERTEX_POSITION_OFFSET+8]     /* xmm2 =  2,  X,  X,  X */ 
        movhps      xmm1, [esi+ebx+VERTEX_POSITION_OFFSET+0]     /* xmm1 =  0,  1,  4,  5 */ 
        movhps      xmm2, [esi+ebx+VERTEX_POSITION_OFFSET+8]     /* xmm2 =  2,  X,  6,  X */ 
        movlps      xmm6, [esi+edx+VERTEX_POSITION_OFFSET+0]     /* xmm6 =  8,  9,  X,  X */ 
        movss       xmm7, [esi+edx+VERTEX_POSITION_OFFSET+8]     /* xmm6 = 10,  X,  X,  X */ 
        movhps      xmm6, [esi+eax+VERTEX_POSITION_OFFSET+0]     /* xmm6 =  8,  9, 12, 13 */ 
        movhps      xmm7, [esi+eax+VERTEX_POSITION_OFFSET+8]     /* xmm6 = 10,  X, 14,  X */ 
        movaps      xmm0, xmm1                                   /* xmm0 =  0,  1,  4,  5 */ 
        shufps      xmm0, xmm6, R_SHUFFLE_PS( 0, 2, 0, 2 )       /* xmm0 =  0,  4,  8, 12 */ 
        shufps      xmm1, xmm6, R_SHUFFLE_PS( 1, 3, 1, 3 )       /* xmm1 =  1,  5,  9, 13 */ 
        shufps      xmm2, xmm7, R_SHUFFLE_PS( 0, 2, 0, 2 )       /* xmm2 =  2,  6, 10, 14 */ 
 
        mov         ecx, [edi+0*12+8] 
        shl         ecx, VERTEX_SIZE_SHIFT 
        mov         ebx, [edi+1*12+8] 
        shl         ebx, VERTEX_SIZE_SHIFT 
        mov         edx, [edi+2*12+8] 
        shl         edx, VERTEX_SIZE_SHIFT 
        mov         eax, [edi+3*12+8] 
        shl         eax, VERTEX_SIZE_SHIFT 
 
        subps       xmm0, xmm3 
        subps       xmm1, xmm4 
        subps       xmm2, xmm5 
 
        movlps      xmm4, [esi+ecx+VERTEX_POSITION_OFFSET+0]     /* xmm4 =  0,  1,  X,  X */ 
        movss       xmm5, [esi+ecx+VERTEX_POSITION_OFFSET+8]     /* xmm5 =  2,  X,  X,  X */ 



        movhps      xmm4, [esi+ebx+VERTEX_POSITION_OFFSET+0]     /* xmm4 =  0,  1,  4,  5 */ 
        movhps      xmm5, [esi+ebx+VERTEX_POSITION_OFFSET+8]     /* xmm5 =  2,  X,  6,  X */ 
        movlps      xmm6, [esi+edx+VERTEX_POSITION_OFFSET+0]     /* xmm6 =  8,  9,  X,  X */ 
        movss       xmm7, [esi+edx+VERTEX_POSITION_OFFSET+8]     /* xmm6 = 10,  X,  X,  X */ 
        movhps      xmm6, [esi+eax+VERTEX_POSITION_OFFSET+0]     /* xmm6 =  8,  9, 12, 13 */ 
        movhps      xmm7, [esi+eax+VERTEX_POSITION_OFFSET+8]     /* xmm6 = 10,  X, 14,  X */ 
        movaps      xmm3, xmm4                                   /* xmm3 =  0,  1,  4,  5 */ 
        shufps      xmm3, xmm6, R_SHUFFLE_PS( 0, 2, 0, 2 )       /* xmm3 =  0,  4,  8, 12 */ 
        shufps      xmm4, xmm6, R_SHUFFLE_PS( 1, 3, 1, 3 )       /* xmm4 =  1,  5,  9, 13 */ 
        shufps      xmm5, xmm7, R_SHUFFLE_PS( 0, 2, 0, 2 )       /* xmm5 =  2,  6, 10, 14 */ 
 
        mov         eax, a 
        mov         edx, d 
        add         edi, 4*12 
 
        subps       xmm3, x0 
        subps       xmm4, x1 
        subps       xmm5, x2 
 
        movaps      xmm6, xmm4 
        mulps       xmm6, xmm2 
        movaps      xmm7, xmm5 
        mulps       xmm7, xmm1 
        subps       xmm6, xmm7 
 
        mulps       xmm5, xmm0 
        mulps       xmm2, xmm3 
        subps       xmm5, xmm2 
 
        mulps       xmm3, xmm1 
        mulps       xmm4, xmm0 
        subps       xmm3, xmm4 
 
        add         eax, 4*16 
 
        movaps      xmm0, xmm6 
        mulps       xmm6, xmm6 
        movaps      xmm1, xmm5 
        mulps       xmm5, xmm5 
        movaps      xmm2, xmm3 
        mulps       xmm3, xmm3 
 
        addps       xmm3, xmm5 
        addps       xmm3, xmm6 
        rsqrtps     xmm3, xmm3 
 
        mulps       xmm0, xmm3 
        mulps       xmm1, xmm3 
        mulps       xmm2, xmm3 
 
        movaps      xmm4, x0 
        movaps      xmm5, x1 
        movaps      xmm6, x2 
 
        mulps       xmm4, xmm0 
        mulps       xmm5, xmm1 
        mulps       xmm6, xmm2 
 
        addps       xmm4, xmm5 
        addps       xmm4, xmm6 
        xorps       xmm4, SIMD_SP_signBit 
 
        // transpose xmm0, xmm1, xmm2, xmm4 to memory 
        movaps      xmm7, xmm0 
        movaps      xmm5, xmm2 
 
        unpcklps    xmm0, xmm1 
        unpcklps    xmm2, xmm4 
 
        movlps      [edx+eax-8*16+0], xmm0 
        movlps      [edx+eax-8*16+8], xmm2 
 
        movhps      [edx+eax-7*16+0], xmm0 
        movhps      [edx+eax-7*16+8], xmm2 
 
        unpckhps    xmm7, xmm1 
        unpckhps    xmm5, xmm4 
 
        movlps      [edx+eax-6*16+0], xmm7 
        movlps      [edx+eax-6*16+8], xmm5 
 



        movhps      [edx+eax-5*16+0], xmm7 
        movhps      [edx+eax-5*16+8], xmm5 
 
        jle         loopPlane4 
 
    done4: 
 
        sub         eax, 4*16 
        jge         done 
 
    loopPlane1: 
        mov         ecx, [edi+0] 
        shl         ecx, VERTEX_SIZE_SHIFT 
        mov         ebx, [edi+4] 
        shl         ebx, VERTEX_SIZE_SHIFT 
        mov         edx, [edi+8] 
        shl         edx, VERTEX_SIZE_SHIFT 
 
        movss       xmm0, [esi+ebx+VERTEX_POSITION_OFFSET+0] 
        subss       xmm0, [esi+ecx+VERTEX_POSITION_OFFSET+0] 
        movss       xmm1, [esi+ebx+VERTEX_POSITION_OFFSET+4] 
        subss       xmm1, [esi+ecx+VERTEX_POSITION_OFFSET+4] 
        movss       xmm2, [esi+ebx+VERTEX_POSITION_OFFSET+8] 
        subss       xmm2, [esi+ecx+VERTEX_POSITION_OFFSET+8] 
 
        movss       xmm3, [esi+edx+VERTEX_POSITION_OFFSET+0] 
        subss       xmm3, [esi+ecx+VERTEX_POSITION_OFFSET+0] 
        movss       xmm4, [esi+edx+VERTEX_POSITION_OFFSET+4] 
        subss       xmm4, [esi+ecx+VERTEX_POSITION_OFFSET+4] 
        movss       xmm5, [esi+edx+VERTEX_POSITION_OFFSET+8] 
        subss       xmm5, [esi+ecx+VERTEX_POSITION_OFFSET+8] 
 
        movss       xmm6, xmm4 
        mulss       xmm6, xmm2 
        movss       xmm7, xmm5 
        mulss       xmm7, xmm1 
        subss       xmm6, xmm7 
 
        add         edi, 1*12 
 
        mulss       xmm5, xmm0 
        mulss       xmm2, xmm3 
        subss       xmm5, xmm2 
 
        mulss       xmm3, xmm1 
        mulss       xmm4, xmm0 
        subss       xmm3, xmm4 
 
        mov         edx, d 
 
        movss       xmm0, xmm6 
        mulss       xmm6, xmm6 
        movss       xmm1, xmm5 
        mulss       xmm5, xmm5 
        movss       xmm2, xmm3 
        mulss       xmm3, xmm3 
 
        add         eax, 1*16 
 
        addss       xmm3, xmm5 
        addss       xmm3, xmm6 
        rsqrtss     xmm3, xmm3 
 
        mulss       xmm0, xmm3 
        mulss       xmm1, xmm3 
        mulss       xmm2, xmm3 
 
        movss       [edx+eax-1*16+0], xmm0 
        movss       [edx+eax-1*16+4], xmm1 
        movss       [edx+eax-1*16+8], xmm2 
 
        mulss       xmm0, [esi+ecx+VERTEX_POSITION_OFFSET+0] 
        mulss       xmm1, [esi+ecx+VERTEX_POSITION_OFFSET+4] 
        mulss       xmm2, [esi+ecx+VERTEX_POSITION_OFFSET+8] 
 
        xorps       xmm0, SIMD_SP_firstSignBit 
        subss       xmm0, xmm1 
        subss       xmm0, xmm2 
        movss       [edx+eax-1*16+12], xmm0 
 
        jl          loopPlane1 



 
    done: 
        pop         ebx 
    } 
} 
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