Advances of Media Technology in Modern Computing

Dr. Hong Jiang, Intel Fellow
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

Intel processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Any code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers, licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole risk of the user.

Intel product plans in this presentation do not constitute Intel plan of record product roadmaps. Please contact your Intel representative to obtain Intel's current plan of record product roadmaps.

Performance claims: Software and workloads used in performance tests may have been optimized for performance only on Intel® microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.Intel.com/performance

Intel, Intel Inside, the Intel logo, Centrino, Intel Core, Intel Atom, Pentium, and Ultrabook are trademarks of Intel Corporation in the United States and other countries.
Contents

• History
• Heterogeneous Computing Architecture
• Video Codec
• Video Processing
• Perceptual Computing Initiatives
• Summary
Contents

• History
• Heterogeneous Computing Architecture
• Video Codec
• Video Processing
• Perceptual Computing Initiatives
• Summary
Two decades ...
MPEG2:
- Block motion comp
- Block DCT

AVC/H.264:
- More complex block coding
- Loop filter & CABAC

HEVC/H.265:
- More complex block coding
- More complex loop filter

Two decades ... Video Coding

1993

2003

2013

2X coding efficiency every 10 years
Two decades ... Video Coding

MPEG2:
• Standard Definition (SD)
• DVD, Broadcast

AVC/H.264:
• High Definition (HD=6xSD)
• Blu-ray, Internet Streaming

HEVC/H.265 (promises):
• Ultra HD (4K = 24xSD)
• Cellular Wireless Streaming

1993 2003 2013

Complexity compounded by ↑ Resolution & ↓ Power
From Big Screen to Mobile

• HD media becomes ubiquitous
 – Optical media led the digital conversion (2006: Blu-ray)
 – Internet streaming is catching up (2009: 720p, 2012: 1080p)
 – All devices are HD capable (2008: DTV/PC, 2010: Smart Phone)
• Beyond HD – 4K Video is coming (2-3 years to reach consumers)

1.1B users

100h/min uploads

Today, video file >50% internet traffic In 2016, sum of all video >86% traffic

HD is ubiquitous & We Are Not Done Yet
Two decades ... Personal Computing

Intel® Pentium™:
• Performance spiral
• MMX/SSE extensions
 (Desktop PC Era)

Intel® Centrino™:
• Low power
• Wi-Fi
 (Mobile Computing Era)

Haswell (4th Gen Intel® Core™):
• Breakthrough battery life
• Leading Graphics/Media
 (Ultra mobility)

1993 2003 2013

Major transformation each decade
Two decades ... Personal Computing

Intel® Pentium™:
• 0.8 um process
• 3.1 millions transistors
(Desktop PC Era)

Intel® Centrino™:
• 0.13 um process
• 77 millions transistors
(Mobile Computing Era)

Haswell (4th Gen Intel® Core™):
• 22 nm process
• ~1.4 billions transistors
(Ultra Mobility)

1993 2003 2013

450x more transistors over 20 years!
Two decades ... Personal Computing

1993: Barely getting thumbnail video on PC

2003: Can play DVD; Limited quality.

2013: Multiple HD, 4K playback and encode; High quality HD video processing

Media Technology revolutionized
Contents

• History
• Heterogeneous Computing Architecture
• Video Codec
• Video Processing
• Perceptual Computing Initiatives
• Summary
Demands and Challenges

Higher Resolution

Higher Quality

Higher Intelligence

Lower Power
Two-Pronged Solutions

• Process Technology – Moore’s Law

• Architecture Innovation
Intel Tick/Tock Development Model

45nm Process Technology
- Nehalem
 - NEW Intel® Microarchitecture (Nehalem)

32nm Process Technology
- Westmere
 - (Nehalem)
- Sandy Bridge
 - NEW Intel Microarchitecture (Sandy Bridge)
- Ivy Bridge
 - (Sandy Bridge)

22nm Process Technology
- Haswell
 - NEW Intel Microarchitecture (Haswell)

Haswell CPU Family
- 22nm Process Technology

Haswell, 4th Generation Intel® Core™ Processors, builds upon innovations in the previous Core™ generations
Architecture Concept

• Trends: Higher capability in a lower power budget
• Power considerations drive a Fixed Function solution
• Flexibility considerations requires a Programmable solution

<table>
<thead>
<tr>
<th>EPI</th>
<th>Power Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 nJ</td>
<td>General purpose microprocessors (x86, ARM cores…)</td>
</tr>
<tr>
<td>1 nJ</td>
<td>Domain specific processors (GPU, DSP …)</td>
</tr>
<tr>
<td>0.1 nJ</td>
<td>ASIC, fixed function Blocks</td>
</tr>
<tr>
<td>0.01 nJ</td>
<td></td>
</tr>
</tbody>
</table>

Max Power Efficiency
Max Flexibility

EPI: Energy spent per Instruction in nJ
NEW EXPERIENCES

Media & Display

GPU Architecture Playbook for Media Computing

Phones & Tablets
Ultrabooks™
Laptops
Workstations & Servers

INNOVATIVE FORM FACTORS

Intel is building Media solutions with Great Power and Scalable Performance for Innovative Form Factors and New Experiences
Increasing Graphics Performance

Source: Intel. 3DMark06

Baseline

80x
70x
60x
50x
40x
30x
20x
10x

2006 2007 2008 2009 2010 2011 2012 2013

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance
Haswell: Processor Graphics Architecture

Video Quality Engine
- Video Processing
- Color Processing

Multi-Format Codec:
- Parallel engine
- High performance
- Video Decode and Encode

Media Optimized Execution Units:
- Zero overhead thread switching
- Native media ISA
- Vector/Matrix oriented operations

Media Accelerators
- Higher throughput & low power
- Retaining flexibility
Some GT3 sku’s come with an 128MB eDRAM, as cache shared with CPU

Significant generational EU count growth (Top line from 8, 16 to 40 EU’s)
Contents

• History
• Heterogeneous Computing Architecture
• Video Codec
• Video Processing
• Perceptual Computing Initiatives
• Summary
Intel® Quick Sync Video

Intel® Quick Sync Video is HW-based video codec capability:

• Break-through performance & quality ➔ new User Experiences
• Many more applications: Wireless Display, Game recording…
Haswell: Quick Sync Video Performance and Power

- 4x-12x real-time transcode at various quality modes
- 10-hour video playback time on latest Apple MacBook Air
- Multi-stream 4K decode
- > real-time 4K Encode

![HD Mosaic](image1.png) ![4K Mosaic](image2.png)

Intel HD Graphics 4600
AVC Transcode Performance and Power

<table>
<thead>
<tr>
<th></th>
<th>Intel QSV Disable</th>
<th>Intel QSV Enable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power (W)</td>
<td>24.74</td>
<td>48.4</td>
</tr>
<tr>
<td>Speed (FPS)</td>
<td>60</td>
<td>280</td>
</tr>
</tbody>
</table>

4.6x faster speed at 0.5x power over SW encoder
Deployment as Media Servers

Example:
- QuickFire Network 1U uServer contains 11 3rd Gen Intel® Core™ mobile processors
- Transcoding over 88 1080p30 HD streams per blade!
Video Encode: A Balanced Approach

<table>
<thead>
<tr>
<th>Encode Solutions</th>
<th>Performance</th>
<th>Power</th>
<th>Flexibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPGPU</td>
<td>Low</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Traditional Fix Function HW</td>
<td>High †</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Flexible Intel Quick Sync Video</td>
<td>High</td>
<td>Low</td>
<td>Balanced</td>
</tr>
</tbody>
</table>

† Subject to actual implementation

- Intel implements a flexible hardware design approach for encoding
 - Hybrid of fix function HW and programmable EU array.
 - Provides balance between performance, power and flexibility

Hybrid 2-Stage Video Encoder:

- “ENC”
 - Rate Control
 - Motion Estimation
 - Intra Prediction
 - Mode Decision

- Accelerated by HW VME

- “PAK” Full HW fix function pipeline
 - Motion Comp.
 - Intra Prediction
 - Forward Quant
 - Pixel Reconstruction
 - Entropy Coding
Encoder Parallelization and Scalability

- **Decoupled Encoding Operations**
 - ENC: Multi-threaded in wave front order macroblocks
 - PAK: Pipelined in raster order macroblocks

- **Multiple level of parallelization**
 - Decoding vs. Encoding
 - ENC and PAK
 - ENC: Multiple Macroblocks in Wave fronts
 - ENC/VME HW: Integer vs. Fractional Search
Intel Quick Sync Video – Multi-year Improvements

- Performance: Over 50% hardware CAGR for three generations
- Quality: Hardware features and algorithm improvements
- Usability: Fine grained quality vs. performance tradeoff control

Data is captured with internal test app over a big set of test clips.
• Frame 670 of Star Trek Into Darkness movie trailer transcoded in HandBrake QSV beta. Both set to VBR 2Mbps Best Quality setting under HandBrake High Profile preset
• Same encode quality on Intel 4th Gen Core Processor with HD 4200/4400/4600, Iris, and Iris Pro. Performance varies on different SKUs
Intel HD Graphics 4000 vs. Intel Iris Pro Graphics 5200

HD Graphics 4000

Iris Pro Graphics 5200

• Frame 670 of Star Trek Into Darkness movie trailer transcoded in HandBrake QSV beta. Both set to VBR 2Mbps Best Quality setting under HandBrake High Profile preset.
• Same encode quality on Intel 4th Gen Core Processor with HD 4200/4400/4600, Iris, and Iris Pro. Performance varies on different SKUs.

Generational quality improvements
Contents

- History
- Heterogeneous Computing Architecture
- Video Codec
- Video Processing
- Perceptual Computing Initiatives
- Summary
Video Processing Pipe

- Migrated to a dedicated VP pipe **Video Quality Engine (VQE)**
- Extensive suite of functions for higher quality video at lower power

In Media Sampler
De-noise

- Spatial and Temporal De-noise Filter
 - Global noise level measurement
 - Content-adaptive spatiotemporal filtering of noise
 - Motion history-based blending of spatial and temporal filter results

- Block
Skin-tone Processing

- **Per-pixel Enhancement of Skin-tone Pixels**
 - Reproduce the natural skin colors on the display screen
 - Skin Tone Detection identifies pixels with skin-like colors with per-pixel indicator
 - Skin Tone Enhancement modifies the Saturation and Hue of the skin-tone pixels

- **Block**

 ![Skin-tone Definition](image)

 Skin-tone Detection

 ![Skin-tone Enhancement](image)

 Skin-tone Indicator
Contrast Enhancement

- **Automatic Contrast Enhancement**: Per-pixel mapping of luma to enhance contrast
 1. Histogram of luma Y pixel values is generated for the input video frame
 2. Piece-Wise Linear Function (PWLF) is generated from luma histogram
 3. Pixel values are modified according to the PWLF

- **Block Interface**
 - Input: YCbCr 444
 - Output: YCbCr 444 with modified Y
Saturation Enhancement

- **Per-Pixel Saturation Enhancement**
 - Utilize 6 basic colors as primaries/anchors (Red, Green, Blue, Magenta, Yellow, Cyan)
 - Adjust colorfulness (saturation) of pixels while maintaining their color (hue)

- **Block Interface**
 - Input: YCbCr 444
 - Output: YCbCr 444 with modified CbCr components

![Diagram showing color space with modified components](image)
Color Correction

• Display proper colors on display screen
 1. Inverse gamma correction via PWLF
 2. 3x3 matrix multiplication with input/output offset
 3. Forward gamma correction via PWLF

• Block Interface
 • Input: RGB
 • Output: RGB
Before

After (Color Correction)
Contents

• History
• Heterogeneous Computing Architecture
• Video Codec
• Video Processing
• Perceptual Computing Initiatives
• Summary
Towards
Natural, Intuitive and Immersive
Human-Computer Interactions

Now

Near Future

The Vision
Perceptual Computing
Adding “Human-like Senses” to the Computing Devices
Download the SDK and order the 3D Camera at intel.com/software/perceptual
Intel® Perceptual Computing SDK

Easily Implemented by Application Developers for:

- Games
- Entertainment
- Productivity
- Accessibility
- Immersive Teleconferencing
- Education
- Health
- Enterprises
- Retail
- Industrial

Download the SDK and order the 3D Camera at intel.com/software/perceptual
Contents

• History
• Heterogeneous Computing Architecture
• Video Codec
• Video Processing
• Perceptual Computing Initiatives
• Summary
Media Usage Outlook

Consumption
- Internet streaming video
- DVD/Blu-ray disc
- Stereoscopic 3D video

Creation
- Photo, video, audio encoding
- Video encode and transcoding
- User generated contents

Interaction
- Face & object detection
- Scene analysis
- Perceptual computation

Recognition
- Video and sensory inputs
- Gesture recognition
- Augmented reality

Synthesis

Image Effects

Playback
Quality

Transcode

Decode

Face

Recognition

Mining/
Analysis

Synthesis

Perception

Internet streaming video
DVD/Blu-ray disc
Stereoscopic 3D video

Gesture

Face & object detection
Scene analysis
Perceptual computation

Video and sensory inputs
Gesture recognition
Augmented reality
Concluding Remarks

• We are in the era of HD digital media

• Moore’s Law inspires Innovations

• Heterogeneous computing addresses the HD media demands

• Media continues to be an exciting fields for years to come