
Graph-Matching-Based Simulation-Region

Selection for Multiple Binaries

Charles Yount and Harish Patil, Intel Corporation

Mohammad S. Islam, Univ. of Texas, San Antonio

Aditya Srikanth, Univ. of Texas, Austin

ISPASS-2015

2015 IEEE International Symposium on Performance Analysis of Systems and Software

March 29-31, 2015

Hilton At Penn's Landing, Philadelphia, PA

2

Motivation and problem statement

Evaluate pre-Si performance differences between n binaries compiled from the same source

Application examples

 Compare compilers and/or compiler optimizations

 Compare impact of different macro architectures and/or instruction set extensions

Requirements

 Find a set of representative simulation regions from each binary such that

 Resulting speedup estimates are accurate

 All regions are feasible for simulation

 Regions are matched across binaries, representing the same semantic work in each

 Tolerate significant differences between binaries due to different optimizations, instruction sets, etc.

 Do not require debug symbols or modification of source code

3

Independent-SimPoint approach

 Divide each binary execution into intervals of equal lengths

 Find phases and representative regions using k-means clustering independently for each binary

 Pro: all simulation regions are near desired length

 Con: regions differ both in number and semantic representation across binaries

 Con: speedup prediction can be unacceptable and minimal performance debug capability

Binary1:

region1 region2 region3 region4
region5

Binaryn:

region1 region2 region3 region4

•

•

•

4

Original Cross-Binary SimPoint (CBSP) solution*
 Find “mappable” routine and loop entry points where symbols and counts are identical across binaries

 Divide each binary execution into intervals of variable lengths bounded by these points

 Find phases and representative regions in binary1, and map them to the other binaries

 Pro: regions are same in number and semantic representation, improving speedup and debugging

 Con: requires symbol information and limited variations in binaries

 Con: clustering accounts for variations over binary1 execution only

 Con: simulation regions can be unfeasibly long due to strict mapping rules

Binary1:

region1 region2 region3 region4 region5

Binaryn:

•

•

• Mappable points

should occur

identically

across binaries

by construction

*Perelman, Lau, Patil, Hamerly, Calder, Jaleel; ISPASS-07

5

New Cross-Binary SimPoints solution

 Pro: relaxes requirement for symbols and allows more divergent binaries

 Pro: clustering accounts for variations across the execution of all binaries

 Pro: alleviates region-length issue

 Enabled by applying new graph-matching and sequence-alignment algorithms…

Binary1:

Binaryn:

•

•

•

region1 region2 region3 region4 region5

 Find all possible “mappable” routine and loop entry points across binaries via graph-matching

 Divide each binary execution into intervals of (less) variable lengths bounded by these points

 Find phases and representative regions in unified profile across all binaries

Resolve

variations in

mappable points

via sequence-

alignment

6

Graph-matching
Dynamic Control-Flow Graph (DCFG) is created from execution of each binary

 Applying graph-matching to entire DCFG was found to be ineffective

 So, DCFG for each binary is decomposed hierarchically

 One top-level call graph: each routine is a node; calls are edges

 One sub-graph for each routine: each loop is a node; dominance (including nesting) defines edges

 Graph-matching is applied to top-level call graph and then to each loop graph in matching routines

 Algorithm matches nodes, minimizing differences in graph topology and node meta-data

Meta-data difference factors between any two nodes

 Edit distance between symbol names, if available

 Symmetric difference between sets of line numbers, if available

 Difference in execution counts (calls for routines, iterations for loops)

 Difference between in-degrees and out-degrees

Loop-matching example from 410.bwaves

7

3 nested loops

from binary A

compiled with

SSE4.2

instruction set

(128-bit SIMD)

Iterations:

• Outer: 400

• Middle: 13,200

• Inner: 264,000

• Epilog: 59,400

3 nested loops

from binary B

compiled with

AVX2 instruction

set (256-bit SIMD)

Iterations:

• Outer: 400

• Middle: 13,200

• Prolog: 19,800

• Inner: 132,000

• Epilog: 46,200

Sequence alignment

8

abb ccc aibc ff k ka bbbcc dgddee jkkkhlm

 bbbcc caa cccd fgaabcekkkkaa ccdd deeffffghijk m

abbb ci abc c dffgh ib ekkhka bcddd hlm

Desired interval length

instructions

Mappable
points

9

Quality of independent SimPoint vs. new CBSP
 AVX2-to-MICAVX512 speedup on CPU2006 with Intel compiler

R
e
la

ti
v
e
 a

b
s
o
lu

te
 e

rr
o
r

(l
o
w

e
r

is
 b

e
tt
e
r)

Independent Simpoint

New CBSP

10

Interval-length of original CBSP vs. new CBSP
A

v
e
ra

g
e
 i
n
te

rv
a
l
le

n
g
th

 (
c
lo

s
e
r

to
 d

o
tt
e
d
 l
in

e
 i
s
 b

e
tt
e
r)

Original CBSP

New CBSP

 AVX2-to-MICAVX512 speedup on CPU2006 with Intel compiler

11

Summary of new Cross-Binary SimPoint method

Benefits compared to independent SimPoint

 Lower speedup-estimation error

 Paired equal-work regions and graph-matching data can be used for performance debug

Benefits compared to original CBSP work

 Graph-matching enables finding more mappable points: without symbols, between

routines and loops with different call and iteration counts, etc.

 Alleviates simulation-length issue

12

To follow up

For more information on Pin and PinPlay

 Visit http://pintool.org/

 Visit http://pinplay.org/

 Attend PinPlay tutorial at PLDI in Portland, OR, June 14, 2015

 We plan to cover DCFG generation in this tutorial

For slides, questions, suggestions, information on availability of software

 Email chuck.yount@intel.com

 Email harish.patil@intel.com

http://pintool.org/
http://pinplay.org/
mailto:chuck.yount@intel.com
mailto:Harish.patil@intel.com

Backup

15

Problem statement

Efficiently and effectively compare the pre-Si performance of n binaries (run with

the same inputs) compiled differently from the same source code

 Conceptual flow:

Source

code

Compiler1 Binary1

Inputs

Simulator1

Speedup

Compilern Binaryn
Simulatorn

•

•

•

•

•

•

•

•

•

 Typical pre-Si limitation: cannot simulate entire run due to low simulation speed

 Need to find representative samples of the execution to simulate

16

Straight-forward SimPoint implementation

Run popular SimPoint simulation-region selection tool on each binary separately

Binary1

Inputs

Simulator1Logger SimPoint

Profile1

Sim Regions0Sim Regions0Sim Regions1

Weights1

Perf Est1

Speedup

Binaryn

•

•

•

•

•

•

Simulatorn
Logger SimPoint

Profilen Sim Regions0Sim Regions0Sim Regionsn

Weightsn

Perf Estn

•

•

•

17

Original Cross-Binary SimPoint* implementation

Speedup

Binary1

Inputs

Binaryn

Logger

Routines

& loops1

Routines

& loopsn

Mappable

points

Logger

∩

Simulator1

Profiler SimPoint

Profile1 Sim Regions0Sim Regions0Sim Regions1

Weights1

Perf Est1

Simulatorn

Sim Regions0Sim Regions0Sim Regionsn

Weightsn

Perf Estn
Region

mapper

*CBSP: Perelman, Lau, Patil, Hamerly, Calder, Jaleel; ISPASS-07

18

New Cross-Binary SimPoint implementation

Speedup

Binary1

Inputs

Binaryn

Logger

DCFG1*

DCFGn

Logger

*DCFG: Dynamic Control-Flow Graph (CFG + execution counts)

Mappable

points
Graph

matcher

Edge trace1

Edge tracen

Sequence

aligner

Unified

profile

Simulator1

SimPoint +

weight calc

Sim Regions0Sim Regions0Sim Regions1

Weights1

Perf Est1

Simulatorn

Sim Regions0Sim Regions0Sim Regionsn

Weightsn

Perf Estn

19

Graph-Matching concept

Technique used in computer vision and other fields

 Minimize meta-data differences between matched nodes (with weight α)

 Minimize topological differences between matched edges (with weight 1-α)

Color=white

Object=oval

Color=black

Object=corner

20

Sequence-alignment

Divide the execution trace of each binary into intervals

 Use the graph-matching data to divide intervals so that each matching set of intervals across
the binaries represents [approximately] the same work

 Create the same number of intervals in each of the n binaries

 Target the length (number of instructions executed) of each interval to be near a target set by
the user

 Output a frequency-vector file for SimPoint containing routine and loop counts in each interval
across all binaries

Heuristics required to handle differences in execution due to

 Different compiler optimizations: loop unrolling, loop reordering, in-lining, etc.

 Different instruction-set architectures, libraries, etc.

 Different SIMD vector widths, masking vs. conditional code, etc.

Ideal sequence-alignment

21

abbb ccc daabccc dffghj iaabcekkk kaabbb bccddd dddeefff fghi jkkk klm

abbbcccdaabcccdffghjiaabcekkkkaabbbbccddddddeeffffghijkkkklm

abbbcccdaabcccdffghjiaabcekkkkaabbbbccddddddeeffffghijkkkklm

Desired slice length
instructions

Timeline of
Binary 0

Bin 1

Bin. 2

Mappable
points

Boundaries
between
slices of equal
work

22

Experimental methodology
 Compile each CPU2006 benchmark with Intel® compiler at “O3” optimization

 One binary using “-xCORE-AVX2” (256-bit vectors)

 One binary using “-xMIC-AVX512” (512-bit vectors, masking, more new features)

 Determine actual AVX512/AVX2 speedup for each “ref” benchmark by executing each binary on the
CMP$im Pin tool and dividing the number of cycles from the AVX512 run by that of the AVX2 run

 Determine quality of new CBSP technique

 Create DCFG, edge-trace and whole-program logs for each benchmark using a PinPlay-enabled
Pin tool

 Apply graph-matching and sequence alignment on each using target length of 30M instructions

 Run SimPoint tool on profile and run CMP$im on each SimPoint-selected region

 Calculate estimated AVX512/AVX2 speedup using simulation regions and weights

 Calculate relative absolute error (RAE) between actual and estimated speedup

 Determine RAE of independent SimPoint using similar calculations for quality comparison

 Create simulation regions using original CBSP technique for interval-length comparison

