Python* API Reference for Intel® Data Analytics Acceleration Library 2020 Update 1

Public Member Functions | List of all members
Input Class Reference

Input objects for the backward average 1D pooling layer More...

Public Member Functions

def __init__
 
def getLayerData
 
def setLayerData
 
def check
 
- Public Member Functions inherited from Input
def getGradientSize
 
- Public Member Functions inherited from Input
def __init__
 Constructor.
 
def getInput
 
def getInputLayerData
 
def setInput
 
def setInputLayerData
 
def addInputGradient
 
def setInputFromForward
 
def check
 
def getLayout
 
- Public Member Functions inherited from InputIface
def __init__
 Constructor.
 
- Public Member Functions inherited from Input
def __init__
 
def check
 
- Public Member Functions inherited from Argument
def __init__
 
def __lshift__
 
def size
 

Detailed Description

Deprecated:
This item will be removed in a future release.

Constructor & Destructor Documentation

def __init__ (   self,
  args 
)

Variant 1

Default constructor

Deprecated:
This item will be removed in a future release.

Variant 2

Copy constructor

Deprecated:
This item will be removed in a future release.

Member Function Documentation

def check (   self,
  parameter,
  method 
)

Checks an input object for the backward average 1D pooling layer

Parameters
parameterAlgorithm parameter
methodComputation method
Returns
Status of computations
Deprecated:
This item will be removed in a future release.
def getLayerData (   self,
  id 
)

Returns an input object for backward average 1D pooling layer

Parameters
idIdentifier of the input object
Returns
Input object that corresponds to the given identifier
Deprecated:
This item will be removed in a future release.
def setLayerData (   self,
  id,
  ptr 
)

Sets an input object for the backward average 1D pooling layer

Parameters
idIdentifier of the input object
ptrPointer to the object

The documentation for this class was generated from the following file:

For more complete information about compiler optimizations, see our Optimization Notice.