Provides methods to access partial results obtained with the compute() method of the implicit ALS algorithm in the the third step of the distributed processing mode.
More...
def allocate_{Float64|Float32} |
( |
|
self, |
|
|
|
input, |
|
|
|
parameter, |
|
|
|
method |
|
) |
| |
Allocates memory to store a partial result of the implicit ALS training algorithm
- Parameters
-
input | Pointer to the input object |
parameter | Pointer to the parameter |
method | Algorithm computation method |
- Full Names
allocate_Float64
is for float64
allocate_Float32
is for float32
def check |
( |
|
self, |
|
|
|
input, |
|
|
|
parameter, |
|
|
|
method |
|
) |
| |
Checks a partial result of the implicit ALS training algorithm
- Parameters
-
input | Pointer to the structure of input objects |
parameter | Pointer to the structure of algorithm parameters |
method | Computation method |
- Variant 1
Returns a partial result of the implicit ALS training algorithm
- Parameters
-
id | Identifier of the partial result |
- Returns
- Value that corresponds to the given identifier
- Variant 2
Returns a partial model obtained with the compute() method of the implicit ALS algorithm in the third step of the distributed processing mode
- Parameters
-
id | Identifier of the partial result |
key | Index of the partial model in the key-value data collection |
- Returns
- Pointer to the partial model object
def getSerializationTag |
( |
|
self | ) |
|
getSerializationTag(DistributedPartialResultStep3 self) -> int
def set |
( |
|
self, |
|
|
|
id, |
|
|
|
ptr |
|
) |
| |
Sets a partial result of the implicit ALS training algorithm
- Parameters
-
id | Identifier of the input object |
ptr | Pointer to the input object |
The documentation for this class was generated from the following file:
- algorithms/implicit_als/training/__init__.py