Python* API Reference for Intel® Data Analytics Acceleration Library 2020 Update 1
Parameters for the gradient boosted trees algorithm. More...
Public Member Functions | |
def | __init__ |
def | check |
![]() | |
def | __init__ |
def | check |
![]() | |
def | __init__ |
Static Public Attributes | |
loss = ... | |
varImportance = ... | |
![]() | |
splitMethod = ... | |
maxIterations = ... | |
maxTreeDepth = ... | |
shrinkage = ... | |
minSplitLoss = ... | |
observationsPerTreeFraction = ... | |
featuresPerNode = ... | |
minObservationsInLeafNode = ... | |
memorySavingMode = ... | |
engine = ... | |
maxBins = ... | |
minBinSize = ... | |
internalOptions = ... | |
def __init__ | ( | self | ) |
__init__(daal.algorithms.gbt.regression.training.Parameter self) -> Parameter
def check | ( | self | ) |
check(Parameter self) -> Status
|
static |
Loss function type
|
static |
64 bit integer flag VariableImportanceModes that indicates the variable importance computation modes
For more complete information about compiler optimizations, see our Optimization Notice.