Computes the results of K-Means algorithm in the first step of the distributed processing mode.
More...
- Parameters
-
fptype | Data type to use in intermediate computations of K-Means, double or float |
method | Computation method of the algorithm, Method |
- Enumerations
- Method Computation methods for K-Means algorithm
- InputId Identifiers of input objects for the K-Means algorithm
- ResultId Identifiers of results of K-Means algorithm
- Aliases
Distributed_Step1LocalFloat64LloydCSR
is an alias of Distributed(step=daal.step1Local, fptype=float64, method=daal.algorithms.kmeans.lloydCSR)
Distributed_Step1LocalFloat64LloydDense
is an alias of Distributed(step=daal.step1Local, fptype=float64, method=daal.algorithms.kmeans.lloydDense)
Distributed_Step1LocalFloat32LloydCSR
is an alias of Distributed(step=daal.step1Local, fptype=float32, method=daal.algorithms.kmeans.lloydCSR)
Distributed_Step1LocalFloat32LloydDense
is an alias of Distributed(step=daal.step1Local, fptype=float32, method=daal.algorithms.kmeans.lloydDense)
Distributed_Step2MasterFloat64LloydCSR
is an alias of Distributed(step=daal.step2Master, fptype=float64, method=daal.algorithms.kmeans.lloydCSR)
Distributed_Step2MasterFloat64LloydDense
is an alias of Distributed(step=daal.step2Master, fptype=float64, method=daal.algorithms.kmeans.lloydDense)
Distributed_Step2MasterFloat32LloydCSR
is an alias of Distributed(step=daal.step2Master, fptype=float32, method=daal.algorithms.kmeans.lloydCSR)
Distributed_Step2MasterFloat32LloydDense
is an alias of Distributed(step=daal.step2Master, fptype=float32, method=daal.algorithms.kmeans.lloydDense)
def __init__ |
( |
|
self, |
|
|
|
args |
|
) |
| |
- Variant 1
Constructs K-Means algorithm
- Parameters
-
nClusters | Number of clusters |
assignFlag | Flag to calculate partial assignment |
- Variant 2
Constructs K-Means algorithm
- Parameters
-
nClusters | Number of clusters |
assignFlag | Flag to calculate partial assignment |
- Variant 3
Constructs K-Means algorithm by copying input objects and parameters of another K-Means algorithm
- Parameters
-
other | An algorithm to be used as the source to initialize the input objects and parameters of the algorithm |
def checkFinalizeComputeParams |
( |
|
self | ) |
|
Returns a pointer to the newly allocated K-Means algorithm with a copy of input objects and parameters of this K-Means algorithm
- Returns
- Pointer to the newly allocated algorithm
Invokes computations and returns partial result
def finalizeCompute |
( |
|
self | ) |
|
Finalizes computations and returns (final) result
Returns the method of the algorithm
- Returns
- Method of the algorithm
def getPartialResult |
( |
|
self | ) |
|
Returns the structure that contains computed partial results
- Returns
- Structure that contains computed partial results
Returns the structure that contains the results of K-Means algorithm
- Returns
- Structure that contains the results of K-Means algorithm
def setPartialResult |
( |
|
self, |
|
|
|
partialRes |
|
) |
| |
Sets the structure that contains computed partial results
def setResult |
( |
|
self, |
|
|
|
result |
|
) |
| |
Registers user-allocated memory to store the results of K-Means algorithm
- Parameters
-
result | Structure to store the results of K-Means algorithm |
K-Means parameters structure
The documentation for this class was generated from the following file:
- algorithms/kmeans/__init__.py