Python* API Reference for Intel® Data Analytics Acceleration Library 2020 Update 1

Public Member Functions | List of all members
Distributed Class Reference

Performs linear regression model-based training in the the first step of the distributed processing mode. More...

Public Member Functions

def __init__
 
def clone
 
def compute
 
def finalizeCompute
 
- Public Member Functions inherited from Online
def __init__
 
def getInput
 
def getMethod
 
def getPartialResult
 
def getResult
 
def clone
 
def compute
 
def finalizeCompute
 
- Public Member Functions inherited from Online
def getPartialResult
 
def getResult
 
def compute
 
- Public Member Functions inherited from Online
def getInput
 
def setPartialResult
 
def setResult
 
def getPartialResult
 
def getResult
 
def compute
 

Additional Inherited Members

- Static Public Attributes inherited from Online
 input = ...
 
 parameter = ...
 

Detailed Description

Parameters
fptypeData type to use in intermediate computations for linear regression model-based training, double or float
methodLinear regression training method, Method
Enumerations
  • Method Computation methods
References
Aliases
  • Distributed_Step1LocalFloat64QrDense is an alias of Distributed(step=daal.step1Local, fptype=float64, method=daal.algorithms.linear_regression.training.qrDense)
  • Distributed_Step1LocalFloat64NormEqDense is an alias of Distributed(step=daal.step1Local, fptype=float64, method=daal.algorithms.linear_regression.training.normEqDense)
  • Distributed_Step1LocalFloat32QrDense is an alias of Distributed(step=daal.step1Local, fptype=float32, method=daal.algorithms.linear_regression.training.qrDense)
  • Distributed_Step1LocalFloat32NormEqDense is an alias of Distributed(step=daal.step1Local, fptype=float32, method=daal.algorithms.linear_regression.training.normEqDense)
  • Distributed_Step2MasterFloat64QrDense is an alias of Distributed(step=daal.step2Master, fptype=float64, method=daal.algorithms.linear_regression.training.qrDense)
  • Distributed_Step2MasterFloat64NormEqDense is an alias of Distributed(step=daal.step2Master, fptype=float64, method=daal.algorithms.linear_regression.training.normEqDense)
  • Distributed_Step2MasterFloat32QrDense is an alias of Distributed(step=daal.step2Master, fptype=float32, method=daal.algorithms.linear_regression.training.qrDense)
  • Distributed_Step2MasterFloat32NormEqDense is an alias of Distributed(step=daal.step2Master, fptype=float32, method=daal.algorithms.linear_regression.training.normEqDense)

Constructor & Destructor Documentation

def __init__ (   self,
  args 
)

Variant 1
Default constructor

Variant 2

Constructs a linear regression training algorithm in the first step of the distributed processing mode by copying input objects and parameters of another linear regression training algorithm

Parameters
otherAlgorithm to use as the source to initialize the input objects and parameters of the algorithm

Member Function Documentation

def clone (   self)

Returns a pointer to a newly allocated linear regression training algorithm with a copy of the input objects and parameters of this linear regression training algorithm in the first step of the distributed processing mode

Returns
Pointer to the newly allocated algorithm
def compute (   self)

Invokes computations and returns partial result

def finalizeCompute (   self)

Finalizes computations and returns (final) result


The documentation for this class was generated from the following file:

For more complete information about compiler optimizations, see our Optimization Notice.