Python* API Reference for Intel® Data Analytics Acceleration Library 2020 Update 1

low_order_moms_csr_batch.py

1 # file: low_order_moms_csr_batch.py
2 #===============================================================================
3 # Copyright 2014-2020 Intel Corporation
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16 #===============================================================================
17 
18 
19 
20 
21 import os
22 import sys
23 
24 from daal.algorithms import low_order_moments
25 
26 utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__))))
27 if utils_folder not in sys.path:
28  sys.path.insert(0, utils_folder)
29 from utils import printNumericTable, createSparseTable
30 
31 DAAL_PREFIX = os.path.join('..', 'data')
32 
33 # Input data set parameters
34 # Input matrix is stored in one-based sparse row storage format
35 datasetFileName = os.path.join(DAAL_PREFIX, 'batch', 'covcormoments_csr.csv')
36 
37 
38 def printResults(res):
39 
40  printNumericTable(res.get(low_order_moments.minimum), "Minimum:")
41  printNumericTable(res.get(low_order_moments.maximum), "Maximum:")
42  printNumericTable(res.get(low_order_moments.sum), "Sum:")
43  printNumericTable(res.get(low_order_moments.sumSquares), "Sum of squares:")
44  printNumericTable(res.get(low_order_moments.sumSquaresCentered), "Sum of squared difference from the means:")
45  printNumericTable(res.get(low_order_moments.mean), "Mean:")
46  printNumericTable(res.get(low_order_moments.secondOrderRawMoment), "Second order raw moment:")
47  printNumericTable(res.get(low_order_moments.variance), "Variance:")
48  printNumericTable(res.get(low_order_moments.standardDeviation), "Standard deviation:")
49  printNumericTable(res.get(low_order_moments.variation), "Variation:")
50 
51 if __name__ == "__main__":
52 
53  # Read datasetFileName from file and create numeric tables for storing input data
54  dataTable = createSparseTable(datasetFileName)
55 
56  # Create algorithm objects for low order moments computing in distributed mode using default method
57  algorithm = low_order_moments.Batch()
58 
59  # Set input arguments of the algorithm
60  algorithm.input.set(low_order_moments.data, dataTable)
61 
62  # Get computed low order moments
63  res = algorithm.compute()
64 
65  printResults(res)

For more complete information about compiler optimizations, see our Optimization Notice.