Python* API Reference for Intel® Data Analytics Acceleration Library 2020 Update 1
PartialModel represents partial multinomial naive Bayes model. More...
Public Member Functions | |
def | serializationTag |
def | getSerializationTag |
def | getNObservations |
def | setNObservations |
def | getNumberOfFeatures |
def | getNFeatures |
def | setNFeatures |
def | getClassSize |
def | getClassGroupSum |
def | __init__ |
def | initialize_{Float64|Float32} |
![]() | |
def | getNFeatures |
def | getNumberOfFeatures |
def | setNFeatures |
![]() | |
def | __init__ |
def | getSerializationTag |
![]() | |
def | serialize |
def | deserialize |
def | getSerializationTag |
![]() | |
def | __init__ |
def __init__ | ( | self, | |
args | |||
) |
Empty constructor for deserialization
Constructs multinomial naive Bayes partial model
nFeatures | The number of features |
parameter | Multinomial naive Bayes parameter |
dummy | Dummy variable for the templated constructor |
Constructs multinomial naive Bayes partial model
nFeatures | The number of features |
parameter | Multinomial naive Bayes parameter |
dummy | Dummy variable for the templated constructor |
float64
float32
def getClassGroupSum | ( | self | ) |
getClassGroupSum(PartialModel self) -> daal.data_management.NumericTablePtr
def getClassSize | ( | self | ) |
getClassSize(PartialModel self) -> daal.data_management.NumericTablePtr
def getNFeatures | ( | self | ) |
Retrieves the number of features in the dataset was used on the training stage
def getNObservations | ( | self | ) |
getNObservations(PartialModel self) -> size_t
def getNumberOfFeatures | ( | self | ) |
Retrieves the number of features in the dataset was used on the training stage
def getSerializationTag | ( | self | ) |
getSerializationTag(PartialModel self) -> int
def initialize_{Float64|Float32} | ( | self | ) |
initialize_{Float64|Float32}(PartialModel self) -> Status
initialize_Float64
is for float64
initialize_Float32
is for float32
def serializationTag | ( | ) |
serializationTag() -> int
def setNFeatures | ( | self, | |
nFeatures | |||
) |
Sets the number of features in the dataset was used on the training stage
nFeatures | Number of features in the dataset was used on the training stage |
def setNObservations | ( | self, | |
nObservations | |||
) |
setNObservations(PartialModel self, size_t nObservations)
For more complete information about compiler optimizations, see our Optimization Notice.