

Intel® Inspector 2020 Update 1

Release Notes

31 March 2020

Intel® Inspector 2020 Update 1

Intel® Inspector 2020 Update 1 Release Notes

2

Customer Support

For technical support, including answers to questions not addressed in this product, visit the technical support

forum, FAQs, and other support information at:

• https://software.intel.com/en-us/inspector/support/

• http://www.intel.com/software/products/support/

• https://software.intel.com/en-us/inspector

Please remember to register your product at https://registrationcenter.intel.com/ by providing your email

address. Registration entitles you to free technical support, product updates and upgrades for the duration of

the support term. It also helps Intel recognize you as a valued customer in the support forum.

NOTE: If your distributor provides technical support for this product, please contact them for support rather

than Intel.

Contents

1 Introduction 2
2 What’s New 3
3 System Requirements 3
4 Where to Find the Release 5
5 Installation Notes 5
6 Known Issues 7
7 Attributions 13
8 Legal Information 13

1 Introduction
Intel® Inspector helps developers identify and resolve memory and threading correctness issues in their C, C++

and Fortran applications on Windows* and Linux*. Additionally, on Windows platforms, the tool allows the

analysis of the unmanaged portion of mixed managed and unmanaged programs and identifies threading

correctness issues in managed .NET C# applications.

Intel Inspector is a dynamic error checking tool for developing multithreaded applications on Windows or Linux

operating systems. Intel Inspector maximizes code quality and reliability by quickly detecting memory,

threading, and source code security errors during the development cycle. You can also use the Intel Inspector

to visualize and manage Static Analysis results created by Intel® compilers in various suite products. Intel

Inspector is an easy, comprehensive solution that delivers rapid results by isolating memory and multithreading

errors.

Intel Inspector has a standalone graphical user interface (GUI) as well as a command line interface (CLI). In

addition, on Microsoft Windows systems, the Intel Inspector integrates into the Microsoft Visual Studio* 2017

and later versions.

This document provides system requirements, issues and limitations, and legal information.

https://software.intel.com/en-us/inspector/support/
http://www.intel.com/software/products/support/
https://software.intel.com/en-us/inspector
https://registrationcenter.intel.com/

Intel® Inspector 2020 Update 1

Intel® Inspector 2020 Update 1 Release Notes

3

To learn more about this product, see:

• New features listed in the What’s New section below.

• The help documents at:

o Linux: https://software.intel.com/en-us/inspector-user-guide-linux

o Windows: https://software.intel.com/en-us/inspector-user-guide-windows

2 What’s New

Intel® Inspector 2020 Update 1

• Intel Inspector has been updated to include more recent versions of 3rd party components, which

include functional and security updates. Users should update to the latest version.

Intel® Inspector 2020

• Bug fixes, functional and security updates.

3 System Requirements

Supported Architectures and Terminology

Intel® Inspector supports the following architectures:

• IA-32 Architecture refers to systems based on 32-bit processors generally compatible with the Intel

Pentium® processors (for example, Intel® Pentium® 4 processor or Intel® Xeon® processor), or

processors from other manufacturers supporting the same instruction set, running a 32-bit operating

system.

• Intel® 64 Architecture refers to systems based on IA-32 architecture processors which have 64-bit

architectural extensions, for example, Intel® Core™ architecture processors, running a 64-bit operating

system such as Microsoft Windows* 10 x64 or a Linux* "x86_64" variant. If the system is running a 32-

bit operating system, then IA-32 architecture applies instead.

Hardware Requirements

• At least 4 GB of RAM

• 350 MB free disk space required for all product features and all architectures.

• A system based on an IA-32 or Intel® 64 architecture processor supporting the Intel® Streaming SIMD

Extensions 2 (Intel® SSE2) instructions (Intel® Pentium 4 processor or later, or compatible non-Intel

processor or Intel® Xeon® Scalable Processors)

o Since the Intel Inspector requires specific knowledge of assembly-level instructions, its analysis

may not operate correctly if code contains non-Intel instructions. In this case, run the analysis

with a target executable that contains only Intel® instructions. After you finish using the Intel

Inspector, you can use the assembler or optimizing compiler options that provide the non-Intel

instructions.

o For the best experience, a multi-core or multi-processor system is recommended

https://software.intel.com/en-us/inspector-user-guide-linux
https://software.intel.com/en-us/inspector-user-guide-windows

Intel® Inspector 2020 Update 1

Intel® Inspector 2020 Update 1 Release Notes

4

Software Requirements

• Supported operating systems (embedded editions are not supported):

o Microsoft Windows* 10 operating system

o Microsoft Windows Server* 2016 and 2019

o Red Hat* Enterprise Linux* 7 and 8

o CentOS* versions equivalent to Red Hat Enterprise Linux versions listed above

o Fedora* 30 and 31 (pangox-compat package should be installed)

o SUSE* Linux* Enterprise Server 12 and 15

o Debian* 10

o Ubuntu* 18.04, 19.04 and 19.10

• Supported Microsoft Visual Studio* versions:

o Microsoft Visual Studio* 2017

o Microsoft Visual Studio* 2019

• Recommended compilers:

o Intel® C/C++ Compiler 12.0 or higher

o GNU* C/C++ Compiler 3.4.6 and higher (Linux)

o Intel® Fortran Compiler 12.0 or higher (Linux)

o Intel® Visual Fortran Compiler 12.0 or higher (Windows)

• Application coding requirements

o Supported programming languages:

▪ Fortran

▪ C

▪ C++

o Supported threading methodologies:

▪ Intel® Threading Building Blocks (Intel® TBB)

▪ Microsoft* PPL* (via Intel® TBB)

▪ Intel® Cilk™ Plus

▪ OpenMP*

▪ Win32* Threads (Windows)

▪ POSIX* Threads (Linux)

▪ Intel® C++ Compiler parallel language extensions

• Managed application coding requirements

o Supported programming languages:

▪ C# (full support for .NET* 2.0-3.5, partial support for .NET 4.0)

NOTE: Intel Inspector has limited support for .NET 4.0:

• The Microsoft* Task Parallel Library classes and algorithms in the

System.Threading.Tasks namespace are not supported.

• The Barrier synchronization class in the System.Threading namespace (new in

.NET 4.0) is not supported.

• To view PDF documents, use a PDF reader, such as Adobe Reader*.

NOTE: You can use Intel Inspector to analyze applications in debug and release modes. To learn more about

options necessary to produce the most accurate, complete results, refer to the following related resources:

Intel® Inspector 2020 Update 1

Intel® Inspector 2020 Update 1 Release Notes

5

• Memory error analysis: https://software.intel.com/en-us/articles/compiler-settings-for-memory-error-

analysis-in-intel-inspector-xe/

• Threading error analysis: https://software.intel.com/en-us/articles/compiler-settings-for-threading-error-

analysis-in-intel-inspector-xe/

4 Where to Find the Release
If you have a qualifying license for this product (i.e. an unexpired free license or a paid license with active

support at the time of the build date for this product release), you can download the installer by logging in to

https://registrationcenter.intel.com/ and selecting the appropriate product.

You may need to create an account and/or register your product. For additional information please see:

• https://software.intel.com/en-us/faq/registration

• https://software.intel.com/en-us/faq/downloading

5 Installation Notes
Installation of Intel® Inspector removes any earlier minor versions of the product within the same major version

that are installed on the system. Different major versions can co-exist with each other; however, on Windows*,

only one version can be integrated with a particular version of Microsoft Visual Studio* at once.

On Windows, double-click on the compressed self-extracting executable file as a user with administrative

privileges to begin installation. Select the full installation option to use default install settings and get the

complete set of user interfaces (which includes a GUI front-end for using the product as well as Microsoft

Visual Studio integration). To learn details of silent non-interactive installation on Windows systems, refer to

http://software.intel.com/en-us/windows_silent_installation_guide .

On Linux*, perform the following steps:

1. Uncompress the package:

gunzip <package-name>.tar.gz

2. Extract the files:

tar xf <package-name>.tar

3. Make sure you have read and write permissions for the /tmp directory and start the installation. To

install on a local system enter the following:

cd <package-name>

./install.sh

NOTE: If you want to install the software for use by any user, you must do this as the root user. To

install to a network-mounted drive or shared file system for multiple users, enter (as root user):

cd <package-name>

./install.sh --SHARED_INSTALL

4. Follow the prompts to complete the installation of the software.

https://software.intel.com/en-us/articles/compiler-settings-for-memory-error-analysis-in-intel-inspector-xe/
https://software.intel.com/en-us/articles/compiler-settings-for-memory-error-analysis-in-intel-inspector-xe/
https://software.intel.com/en-us/articles/compiler-settings-for-threading-error-analysis-in-intel-inspector-xe/
https://software.intel.com/en-us/articles/compiler-settings-for-threading-error-analysis-in-intel-inspector-xe/
https://registrationcenter.intel.com/
https://software.intel.com/en-us/faq/registration
https://software.intel.com/en-us/faq/downloading
http://software.intel.com/en-us/windows_silent_installation_guide

Intel® Inspector 2020 Update 1

Intel® Inspector 2020 Update 1 Release Notes

6

Intel® Software Manager

Intel® Software Manager installs with Intel® Software Development Products on Windows operating systems.

Intel Software Manager is a utility that lets you:

• Download and install updates for your Intel Software Development Products.

• Manage subscription status of installed software.

• Activate serial numbers.

• Find out about the latest news for Intel Software Development Products.

Intel Software Manager requires an Internet connection to connect to a remote server for information and

updates.

For more information about the Intel Software Manager, see https://registrationcenter-

ssl.intel.com/Docs/ism.htm .

Default Installation Folders

The default top-level installation folders for this product are:

• Windows: C:\Program Files\IntelSWTools\Inspector 2020

o If you are installing on a system with a non-English language version of Windows* OS, the

name of the Program Files folder may be different. On Intel® 64 systems, the directory name

is Program Files (x86) or the equivalent.

• Linux: /opt/intel/inspector_2020

In both cases, there is also a generic soft link to the most recently installed version.

Changing, Updating and Removing the Product

On Windows* 10, open Settings -> App & features, select Intel Inspector 2020 and click Modify/Uninstall

to modify, repair, or remove the product. Follow the installation instructions. You may need the original

installation files to complete this process. If you do not have the extracted files, you can use the original

installer executable to complete this process as well.

On Linux, to remove the product, execute the following commands as a root user or the same user who

performed the installation:

1. cd <installation_dir>

2. uninstall.sh

Known Installation and Configuration Issues

All of the following issues are Windows specific, as they deal with Microsoft Visual Studio.

• In very rare situations, the installer may hang during the phase Configuring integration with Microsoft

Visual Studio* 20XX software… phase. If the installer hangs for more than 20 minutes, locate process

devenv.exe and shut down the process. Make sure that you do not have any running instances of

Microsoft Visual Studio software. Reboot the machine and then install the product again.

• By default, Microsoft Visual Studio sets the Launch in Browser option to display documentation for

integrated products. To view the Intel Inspector local help documentation: Choose Help > Intel

https://registrationcenter-ssl.intel.com/Docs/ism.htm
https://registrationcenter-ssl.intel.com/Docs/ism.htm

Intel® Inspector 2020 Update 1

Intel® Inspector 2020 Update 1 Release Notes

7

Inspector 2020 > Intel Inspector 2020 Help or use context-sensitive help. If you still encounter

problems viewing the help, choose Help > Set Help Preferences > Launch in Help Viewer.

• If you have problems viewing Microsoft Visual Studio help pages, check the settings for Internet

Explorer* in Tools > Internet Options > Security. To allow correct display of help, in the Internet

zone enable MIME Sniffing and Active scripting. Alternatively, from Tools > Internet Options >

Security add "about:internet" to the list of trusted sites.

Setting Up the Command Line

Before using Intel Inspector on the command line, you will need to set up the environment:

• Windows: <installation_dir>\inspxe-vars.bat

• Linux: source <installation_dir>/inspxe-vars.sh

6 Known Issues
This section is quite long. To skip to operating system specific limitations, use these links:

• Windows* Specific Limitations

• Linux* Specific Limitations

Common Limitations

INTEL® INSPECTOR MAY NOT DETECT ALL ERRORS

Intel does not guarantee that the Intel Inspector will detect or report every memory and threading error in an

application.

• Not all logic errors are detectable.

• Heuristics used to eliminate false positives may hide real issues.

• Highly correlated events are grouped into a single problem.

INTEL INSPECTOR MAY INCORRECTLY REPORT DATA RACE PROBLEMS ON SIMPLE OPERATIONS

On some hardware, the Intel Inspector may report data race problems on simple operations (such as variable

load or store operations) assumed to be atomic operations instead of explicit atomic instructions. In particular,

the Intel Inspector reports false data race issues on C++ 11 std::atomic class operations compiled with the

GNU gcc* compiler. Intel® and Microsoft* compilers use explicit atomic instructions; therefore, code generated

with these compilers is not impacted.

INTEL INSPECTOR MAY DISPLAY MODULE NAMES AND RELATIVE VIRTUAL ADDRESSES IF IT CANNOT LOCATE

SYMBOLS

If no symbols are found for a module in which a problem is detected, the Intel Inspector displays the call stack

and observation source code of the first location where it can find symbols. If it cannot find any location in the

call stack with symbols, it displays the module name and relative virtual address (RVA) for the location.

APPLICATION CRASHES MAY CRASH OR HANG INTEL INSPECTOR

Applications that crash when run outside the Intel Inspector may crash or hang the Intel Inspector runtime

analysis engine. For example, a corrupt return address on an application call stack crashes the runtime

analysis engine. If a crash occurs, problems detected prior to that time can be viewed, but memory leaks will

Intel® Inspector 2020 Update 1

Intel® Inspector 2020 Update 1 Release Notes

8

not be reported. Reviewing the problems that were reported may help, as it is likely that one of them caused

the crash.

INTEL INSPECTOR CANNOT START AN ANALYSIS FROM THE GUI IF PREVENTED FROM OPENING A SOCKET

Intel Inspector uses a socket to communicate between the graphical user interface and the runtime analysis

engine. Preventing an application from opening a socket prevents an analysis of the application from being

started by the graphical user interface. The command-line interface can be used to run an analysis in this case

and the results can subsequently be viewed using the graphical interface.

INTEL INSPECTOR MAY INCORRECTLY REPORT CALL STACKS FOLLOWING AN INTERRUPTION OF NORMAL CALL FLOW

Intel Inspector may report an incorrect call stack following an interruption of normal call flow, such as when an

exception is thrown and caught. While the Intel Inspector recognizes and attempts to correct result data when

this situation occurs, it is possible for a threading or memory problem to be reported before the call stack is

fully corrected.

USING TOO MANY OPENMP* THREADS MAY RESULT IN “INSUFFICIENT MEMORY” ERRORS

If the Intel Inspector reports insufficient memory errors while analyzing OpenMP* applications, try setting

OMP_NUM_THREADS to limit the number of OpenMP threads. In most cases, OMP_NUM_THREADS=2 is

sufficient.

LARGE APPLICATIONS MAY RESULT IN “INSUFFICIENT MEMORY” ERRORS

If the Intel Inspector reports insufficient memory errors during analysis, try analyzing your application in

sections by running several analyses and excluding a different set of modules for each run. Note that Intel

Inspector does not detect or report issues in excluded modules.

INTEL INSPECTOR ANALYZES ONLY THE FIRST INSTANCE OF A CHILD APPLICATION

If a child application is selected for analysis, the Intel Inspector analyzes only the first instance of that

application, even if multiple instances of that application occur.

INTEL INSPECTOR FILTERS DO NOT PERSIST ON RELOADING RESULTS

When taking advantage of the Intel Inspector custom filter by source, be aware that this filter does not persist

when reloading results.

MEMORY ERROR ANALYSIS: ON-DEMAND LEAK DETECTION DOES NOT REPORT MEMORY LEAKS UNTIL THE END OF

THE BLOCK

On-demand leak detection will not report memory leaks until the end of the basic block in which they occur, as

there is still an internal reference in the program to that memory. If the baseline for leak detection is not reset,

these leaks will be reported at the next request.

MEMORY ERROR ANALYSIS: INTEL INSPECTOR MAY REPORT FALSE POSITIVES ON APPLICATIONS WITH CUSTOM

MEMORY ALLOCATORS

Intel Inspector may report false positives when the analyzed application uses custom memory allocators. Use

of _itt_notify to annotate your source code can reduce these false positives.

Intel® Inspector 2020 Update 1

Intel® Inspector 2020 Update 1 Release Notes

9

MEMORY ERROR ANALYSIS: INTEL INSPECTOR MAY BEHAVE UNPREDICTABLY IF C RUNTIME ALLOCATOR SEMANTICS

ARE CHANGED

If the semantics of standard C runtime allocators are changed, the behavior of the Intel Inspector is unknown

and could lead to abnormal analysis termination. For instance, if the application is using non-standard versions

of these allocators where the memory returned by the allocator is initialized when it would normally be

uninitialized.

THREADING ERROR ANALYSIS: INTER-PROCESS DATA RACES AND DEADLOCKS ARE NOT DETECTED.

Intel Inspector does not detect inter-process data races or deadlocks.

THREADING ERROR ANALYSIS: CUSTOM SYNCHRONIZATION PRIMITIVES MAY RESULT IN FALSE POSITIVES

Intel Inspector may report false positives for analyzed applications using customized synchronization

primitives. Use of _itt_notify to annotate your source code can reduce these false positives.

THREADING ERROR ANALYSIS: MACROS MUST BE SET BEFORE COMPILING INTEL® TBB APPLICATIONS

To enable correct analysis of Intel® TBB applications, set the following required macros before compiling:

• If using Intel® TBB debug libraries:

TBB_USE_DEBUG (which sets TBB_USE_THREADING_TOOLS)

• If using Intel® TBB release libraries:

TBB_USE_THREADING_TOOLS

THREADING ERROR ANALYSIS: STATIC LINKING OF CERTAIN FILES MAY RESULT IN FALSE POSITIVES

Intel Inspector may report false positives if you have the Microsoft C runtime statically linked in the Windows

application. On Linux, this issue may happen with libc or libpthread statically linked to the application. To

work around this issue, build your application with Microsoft C runtime (on Windows) or libc or libpthread

(on Linux) dynamically linked in.

Windows* Specific Limitations

MICROSOFT VISUAL STUDIO* 2019 DEBUGGER INTEGRATION SUFFERS A GUI RELATED BUG

If Inspector is run with option “Enable debugger when problem detected” or “Select analysis start location with

debugger”, then the detected problems are displayed as separate windows and you cannot switch between

these windows manually. The workaround for this issue is to turn off the option in Tools -> Options ->

General -> (by unchecking the checkbox) Optimize Rendering for screens with different pixel densities.

ANTIVIRUS SOFTWARE CAN PREVENT INTEL INSPECTOR FROM INSTRUMENTING CODE

Virus checking can sometimes interfere with our ability to instrument code. The following error indicates the

virus checker has modified ntdll.dll, which will cause our collections to fail. Currently there is no

workaround, except turning off the virus checker.

<”Collection failed” or some form of “Internal error”>

<date and timestamp> Collection failed. The data cannot be displayed.

Intel® Inspector 2020 Update 1

Intel® Inspector 2020 Update 1 Release Notes

10

[Instrumentation Engine]: SYSCALL_INSPECTOR: The NTDLL!NtTerminateThread function jumps out of

NTDLL, at 0x7ffeb0fe00c4. It may be hooked by a PIN-incompatible software installed on the system

Source\pin\base_w\ipc_server_windows.cpp: LEVEL_BASE::StartServer: 2216: assertion failed: res == TRUE

.NET SUPPORT IS DEPRECATED

With the launch of the 2019 products, we will be listing the deprecation of .NET support in Intel Inspector. We

currently only fully support .NET 3.5 which is an older technology that is seeing less and less use. We

evaluated updating Intel Inspector to support newer versions of .NET, but this is prohibitively expensive and

not consistent with our current business goals.

We will continue to support .NET in Intel Inspector until August of 2020, but will not be enhancing it. We plan to

remove it from the product in August of 2020. This deprecation only applies to Intel Inspector; Intel® VTune™

Profiler, our performance profiler, will continue to support it.

Intel Inspector supports the .NET 4.0 Runtime with the exception of the new Task Parallel Library classes.

MANUAL INTEGRATION INTO MICROSOFT VISUAL STUDIO* 2017 DOES NOT WORK

The product integrates into Microsoft Visual Studio 2017 only using official Intel Inspector installation. Any

other ways like inspxe-vsreg.exe tool or manual launching of the .vsix package will not work.

USING MICROSOFT VISUAL STUDIO* DEBUGGER “ATTACH” COMMAND ON APPLICATIONS UNDER ANALYSIS RESULTS

IN DEBUGGING THE INTEL INSPECTOR ANALYSIS TOOL AND NOT THE APPLICATION BEING ANALYZED

To debug an application that is running an Intel Inspector analysis you must choose one of the Intel Inspector

debug analysis options when starting the application. Using the Visual Studio Debugger "attach" command

after starting an application under analysis does not have the same effect and will result in debugging the Intel

Inspector analysis tool and not the application. When starting a debug analysis session in the documented

manner, the Intel Inspector uses a probe in the Visual Studio process to intercept and modify the Visual Studio

Debugger behavior such that it controls execution and displays information about the target application rather

than the analysis tool.

INTEL INSPECTOR HAS LIMITED SUPPORT FOR WINDOWS* FIBERS

Intel Inspector only has limited support for Windows* fibers.

INTEL INSPECTOR DOES NOT SUPPORT BINARIES BUILT WITH /DEBUG:FASTLINK

Intel Inspector doesn't support binaries built with "/DEBUG:FASTLINK" option, which is default in Microsoft

Visual Studio* 2017.

WINDOWS* 8 STORE APPS AND WINRT APIS ARE NOT SUPPORTED

Intel Inspector does not support development of new Windows* 8 Store Apps and use of WinRT APIs.

MEMORY ERROR ANALYSIS: CERTAIN COMPILATION OPTIONS CAN HIDE ERRORS FROM INTEL INSPECTOR ANALYSIS

If you turn on Analyze stack accesses for a memory analysis, then make sure the application being analyzed is

not compiled with the default Microsoft Visual C++* setting /RTC1 or with /RTCs. These options cause a basic

runtime check for stacks which uses a fill technique to detect uninitialized accesses that hides errors from the

Intel Inspector's memory analysis.

Intel® Inspector 2020 Update 1

Intel® Inspector 2020 Update 1 Release Notes

11

THREADING ERROR ANALYSIS: APPLICATIONS USING MICROSOFT* CONCURRENCY RUNTIME FRAMEWORK MAY

RESULT IN FALSE POSITIVES

Intel Inspector may report false positives when analyzing applications that use the Microsoft* Concurrency

Runtime framework (Parallel Patterns Library, Asynchronous Agents Library, etc.).

THREADING ERROR ANALYSIS: INTEL INSPECTOR DOES NOT DETECT DEADLOCKS OR DATA RACES IN SYSTEM

MODULES

Intel Inspector does not detect data races or deadlocks in system modules (say, modules residing in

Windows\System32 directory). For example, DX9 libraries and memory accessed by DX libraries installed in

Windows system directory are not analyzed. To enable detection of the issues, move the modules to a non-

system directory (say to the Windows Program Files directory).

THREADING ERROR ANALYSIS: INTEL INSPECTOR MAY HANG IF MULTIPLE VERSIONS OF MICROSOFT* .NET ARE

USED

Using multiple versions of the Microsoft .NET* framework in the same application may cause the Intel

Inspector to hang.

THREADING ERROR ANALYSIS: INTEL INSPECTOR MAY NOT CAPTURE MAIN THREAD CREATION SITE

Intel Inspector does not capture the main thread creation site if…

• the binary is built without debug symbol information.

• the .pdb symbol file is not in the location specified within the .exe or .dll executable file or in the location

containing the .exe or .dll executable file.

Linux* Specific Limitations

SECURITY-ENHANCED LINUX* (SELINUX) SETTINGS ARE NOT SUPPORTED

Intel Inspector does not currently support Security-enhanced Linux* settings (SELinux); it supports only

Permissive mode.

To work around this limitation, either disable SELinux by

• setting the line "SELINUX=disabled" in your /etc/sysconfig/selinux file

• adding "selinux=0" kernel argument in lilo.conf or grub.conf files

or make a SELinux mode adjustment by

• setting the line "SELINUX=permissive" in your /etc/sysconfig/selinux file

• asking your system administrator to make a SELinux mode adjustment

You may need to reboot your system after changing the system parameters. More information about SELinux

can be found at https://www.nsa.gov/what-we-do/research/selinux/documentation/ .

INTEL INSPECTOR DEBUGGER MAY NOT LAUNCH FROM CERTAIN TERMINALS

Intel Inspector cannot launch a debugger when the terminal type konsole is used on KDE* versions older than

4.6. Use a terminal such as xterm on older KDE versions when using the analysis with debug feature.

https://www.nsa.gov/what-we-do/research/selinux/documentation/

Intel® Inspector 2020 Update 1

Intel® Inspector 2020 Update 1 Release Notes

12

MULTIPLE DEBUGGER SESSIONS MAY OPEN WHEN ANALYZING MULTI-THREADED APPLICATIONS

When running a multi-threaded application, use of Enable debugger when problem detected (-

appdebug=on-error) can result in multiple debugger sessions being opened. Only the first occurrence will

be connected and able to debug the application under analysis. The workaround is to use Select analysis

start location with debugger (-appdebug=on-start) so that only one debug session will be started, then

turn on analysis by entering the extended debugger command monitor begin-analysis and then

continue to resume execution until it encounters a problem.

INTEL INSPECTOR ANALYSIS MAY FAIL IF ATTEMPTING TO STORE RESULTS IN A PARALLEL VIRTUAL FILE SYSTEM 2

If you try to store results on a Parallel Virtual File System 2 (pvfs2), Intel Inspector analysis fails with the

following error: "Error: Failed to create a database. Cannot continue."

To work around this issue, specify a result directory location that is not on a pvfs2 file system.

COMMANDS FOR INTERACTIVE DEBUGGING WITH GDB ON FORTRAN APPLICATIONS MAY BE SLOW (INSP-217)

When using interactive debugging with gdb on Fortran programs on Linux, the 'next' and 'step' commands in

the debugger can take a very long time to execute. To work around this, use the Intel® debugger with Fortran

programs. The launched debugger can be changed in the GUI from the File->Options menu. It can be set for

the CLI using the INSPXE_DEBUGGER environment variable or the -debug-using command line option.

ANALYSIS MAY FAIL IF PTRACE IS DISABLED

Memory and threading analysis require ptrace to be enabled on Linux platforms. Some newer Linux

distributions disable it by default. If ptrace is disabled, it results in the message: "Error: Failed to start the

analysis because the scope of ptrace() system call application is limited."

To work around this issue, enable ptrace by setting /proc/sys/kernel/yama/ptrace_scope to 1.

INTEL INSPECTOR MAY PRODUCE ERRORS IF THE TARGET APPLICATION ATTEMPTS TO SUSPEND ALL THREADS

(INSP-471)

The message "detected an attempt to suspend an internal thread…" happens when the target application

attempts to suspend all threads, causing the Intel Inspector thread suspension as well. To avoid this error:

1. Disable the Enable collection progress information checkbox in the Target tab of the Project

Properties dialog box.

2. Disable the Enable interactive memory growth detection checkbox in the Analysis Type pane.

3. Rerun the analysis.

Also avoid running an interactive debugging session during analysis.

INTEL INSPECTOR MAY BEHAVE UNPREDICTABLY OR CRASH WITH CERTAIN LINUX DESKTOP WINDOW MANAGERS

When using Intel Inspector with some Linux desktop window managers on Linux OS, there are known Linux

window manager issues which may cause unexpected behavior (like disappearance of controls or even the

whole GUI) or even spontaneous crashes of Intel Inspector. There is no workaround; we recommend switching

to a different window manager.

Intel® Inspector 2020 Update 1

Intel® Inspector 2020 Update 1 Release Notes

13

THREADING ERROR ANALYSIS: INTEL INSPECTOR MAY NOT CAPTURE MAIN THREAD CREATION SITE

Intel Inspector does not capture the main thread creation site if the binary is built without debug symbol

information.

7 Attributions
The license information for third party software that was used to develop Intel® Inspector can be found in

<install_dir>/licensing/third-party-programs.txt .

For the avoidance of doubt, the Intel Inspector is solely governed by the terms and conditions of the End User

License Agreement for Intel® Software Development Product that accompanies the Intel Inspector.

8 Legal Information
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this

document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of

merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from

course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information

provided here is subject to change without notice. Contact your Intel representative to obtain the latest

forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors which may cause deviations from

published specifications. Current characterized errata are available on request. . No product or component can be

absolutely secure.

Copies of documents which have an order number and are referenced in this document may be obtained by

calling 1-800-548-4725 or by visiting www.intel.com/design/literature.html.

Intel, the Intel logo, Intel Core, VTune, and Xeon are trademarks of Intel Corporation in the U.S. and/or other

countries.

*Other names and brands may be claimed as the property of others.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation

in the United States and/or other countries.

Java is a registered trademark of Oracle and/or its affiliates.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.

Copyright 2010 - 2020 Intel Corporation.

This software and the related documents are Intel copyrighted materials, and your use of them is governed by

the express license under which they were provided to you (License). Unless the License provides otherwise,

https://www.intel.com/content/www/us/en/design/resource-design-center.html

Intel® Inspector 2020 Update 1

Intel® Inspector 2020 Update 1 Release Notes

14

you may not use, modify, copy, publish, distribute, disclose or transmit this software or the related documents

without Intel's prior written permission.

This software and the related documents are provided as is, with no express or implied warranties, other than

those that are expressly stated in the License.

