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1 Introduction 
This document describes how to install the product, provides a summary of new and changed 

features and includes notes about features and problems not described in the product 

documentation. 

Due to the nature of this comprehensive integrated software development tools solution, 

different Intel® C++ Composer XE components may be covered by different licenses. Please 

see the licenses included in the distribution as well as the Disclaimer and Legal Information 

section of these release notes for details. 

1.1 Change History 
This section highlights important from the previous product version and changes in product 

updates.  For information on what is new in each component, please read the individual 

component release notes. 

1.1.1 Changes in Update 2 

 Intel® C++ Compiler XE 14.0.2 

 Intel® Math Kernel Library 11.1 update 2 

 Intel® Integrated Performance Primitives 8.1 

 Intel® Threading Building Blocks 4.2 update 3 

 New Intel® Cilk™ Plus STL vector reducer in Intel® C++ Composer XE 2013 SP1 

update 2 

 KMP_DYNAMIC_MODE Environment Variable Support for “asat” Deprecated  

 Corrections to reported problems 

1.1.2 Changes in Update 1 

 First 14.0 version with Japanese localization  

 Intel® C++ Compiler XE 14.0.1 

 Intel® Math Kernel Library 11.1 update 1 

 Intel® Integrated Performance Primitives 8.0 update 1 

 Intel® Threading Building Blocks 4.2 update 1 

 GNU* Project Debugger (GDB) provides register support for Intel® Memory Protection 

Extensions (Intel® MPX) and Intel® Advanced Vector Extensions 512 (Intel® AVX-512) 

 New compiler option /Qopt-gather-scatter-unroll (opt-gather-scatter-

unroll) for targeting Intel® MIC Architecture 

 New compiler option /Q[a]xMIC-AVX512(-[a]xMIC-AVX512)  

 New compiler option -f[no-]mpc_privatize to enable privatization of all static data for the 

MultiProcessor Communications environment (MPC) unified parallel runtime.  

 New compiler option /Qcheck-pointers-mpx (-check-pointers-mpx) to support 

the Intel® Memory Protection Extensions (Intel® MPX) 

 “uniform(this)” is now allowed in Intel® Cilk™ Plus SIMD enabled function (e.g., 

__declspec(vector(uniform(this)))) 

 New intrinsic _allow_cpu_features  
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 New Numeric String Conversion Library: libistrconv 

 Corrections to reported problems 

1.1.3 Changes since Intel® Composer XE 2013 

 Online installation 

 GUI installation 

 Intel® C++ Compiler XE 14.0.0 

 GNU* Project Debugger (GDB*) 

 Intel® Debugger support deprecated 

 Fedora* 18 and 19 are now supported 

 Ubuntu* 13.04 and Debian* 7.0 are now supported 

 Support for the following versions of Linux distributions has been dropped: 

o Fedora* 17 

o Ubuntu* 11.10 

o Pardus* 2011.2 

 Features from C++11 (-std=c++11) 

 Partial OpenMP* 4.0 support 

 Intel® Cilk™ Plus changes 

 DWARF V4 support 

 __INTEL_COMPILER_UPDATE predefined macro 

 Pointer type alignment qualifiers 

 Variable definition attributes to avoid false sharing 

 -mtune performance tuning option 

 Using offload code in shared libraries requires main program to be linked with –

offload=mandatory or –offload=optional option 

 -openmp-offload/-openmp-simd options added for controlling the enabling/disabling of 

specific OpenMP* 4.0 features independently of other OpenMP features 

 __GXX_EXPERIMENTAL_CXX0X__ Macro Not Supported 

 -xATOM_SSE4.2 option added to support Silvermont microarchitecture 

 Intel® Math Kernel Library 11.1 

 Intel® Integrated Performance Primitives 8.0 update 1 

 Intel® Threading Building Blocks 4.2 

1.2 Product Contents 
Intel® C++ Composer XE 2013 SP1 Update 1 for Linux* includes the following components: 

 Intel® C++ Compiler XE 14.0.1 for building applications that run on IA-32, Intel® 64 

architecture systems and Intel® Xeon Phi™ coprocessors running the Linux* operating 

system 

 GNU* Project Debugger (GDB*) 7.5 

 Intel® Debugger 13.0 

 Intel® Integrated Performance Primitives 8.0 update 1 

 Intel® Math Kernel Library 11.1 
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 Intel® Threading Building Blocks 4.2 

 Integration into the Eclipse* development environment 

 On-disk documentation 

1.3 System Requirements 
For an explanation of architecture names, see http://intel.ly/q9JVjE  

 A PC based on an IA-32 or Intel® 64 architecture processor supporting the Intel® 

Streaming SIMD Extensions 2 (Intel® SSE2) instructions (Intel® Pentium® 4 processor 

or later, or compatible non-Intel processor) 

o Development of 64-bit applications or applications targeting Intel® MIC 

Architecture is supported on a 64-bit version of the OS only.  Development of 32-

bit applications is supported on either 32-bit or 64-bit versions of the OS 

Development for a 32-bit on a 64-bit host may require optional library 

components (ia32-libs, lib32gcc1, lib32stdc++6, libc6-dev-i386, gcc-multilib, g++-

multilib) to be installed from your Linux distribution. 

 For Intel® MIC Architecture development/testing: 

o Intel® Xeon Phi™ coprocessor 

o Intel® Manycore Platform Software Stack (Intel® MPSS) 

 For the best experience, a multi-core or multi-processor system is recommended 

 1GB of RAM (2GB recommended) 

 2.5GB free disk space for all features 

 One of the following Linux distributions (this is the list of distributions tested by Intel; 

other distributions may or may not work and are not recommended - please refer to 

Technical Support if you have questions): 

o Fedora* 18,19 

o Red Hat Enterprise Linux* 5, 6 

o SUSE LINUX Enterprise Server* 10, 11 

o Ubuntu* 12.04 LTS, 13.04 

o Debian* 6.0, 7.0 

o Intel® Cluster Ready 

 Linux Developer tools component installed, including gcc, g++ and related tools 

o gcc versions 4.1-4.8 supported 

o binutils versions 2.17-2.23 supported 

 Library libunwind.so is required in order to use the –traceback option.  Some Linux 

distributions may require that it be obtained and installed separately. 

Additional requirements to use GNU* GDB 

 To use the provided GNU* GDB, Python* version 2.4, 2.6 or 2.7 is required. 

Additional requirements to use the Graphical User Interface of the Intel® Debugger 

 Java* Runtime Environment (JRE) 6.0 (also called 1.6†) – 5.0 recommended 

o A 32-bit JRE must be used on an IA-32 architecture system and a 64-bit JRE 

must be used on an Intel® 64 architecture system 
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Additional requirements to use the integration into the Eclipse* development 

environment 

 Eclipse Platform version 4.2 with: 

o Eclipse C/C++ Development Tools (CDT) 8.1 or later 

o Java* Runtime Environment (JRE) 6.0 (also called 1.6†) or later 

 Eclipse Platform version 3.8 with: 

o Eclipse C/C++ Development Tools (CDT) 8.1 or later 

o Java* Runtime Environment (JRE) 6.0 (also called 1.6†) or later 

 Eclipse Platform version 3.7 with: 

o Eclipse C/C++ Development Tools (CDT) 8.0 or later 

o Java* Runtime Environment (JRE) 6.0 (also called 1.6†) or later 

† There is a known issue with JRE 6.0 through update 10 that causes a crash on Intel® 64 

architecture.  It is recommended to use the latest update for your JRE.  See 

http://www.eclipse.org/eclipse/development/readme_eclipse_3.7.html section 3.1.3 for details. 

Notes 

 The Intel compilers are tested with a number of different Linux distributions, with different 

versions of gcc. Some Linux distributions may contain header files different from those 

we have tested, which may cause problems. The version of glibc you use must be 

consistent with the version of gcc in use. For best results, use only the gcc versions as 

supplied with distributions listed above.  

 The default for the Intel® compilers is to build IA-32 architecture applications that require 

a processor supporting the Intel® SSE2 instructions - for example, the Intel® Pentium® 

4 processor. A compiler option is available to generate code that will run on any IA-32 

architecture processor.  However, if your application uses Intel® Integrated Performance 

Primitives or Intel® Threading Building Blocks, executing the application will require a 

processor supporting the Intel® SSE2 instructions. 

 Compiling very large source files (several thousands of lines) using advanced 

optimizations such as -O3, -ipo and -openmp, may require substantially larger amounts 

of RAM. 

 The above lists of processor model names are not exhaustive - other processor models 

correctly supporting the same instruction set as those listed are expected to work. 

Please refer to Technical Support if you have questions regarding a specific processor 

model 

 Some optimization options have restrictions regarding the processor type on which the 

application is run. Please see the documentation of these options for more information. 

1.3.1 Red Hat Enterprise Linux 5* and SuSE Enterprise Linux 10* are deprecated 

Support for these operating system versions is deprecated, and support may be removed in a 

future release. 
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1.3.2 IA-64 Architecture (Intel® Itanium®) Development Not Supported  

This product version does not support development on or for IA-64 architecture (Intel® 

Itanium®) systems.  The version 11.1 compiler remains available for development of IA-64 

architecture applications. 

1.4 Documentation 

Product documentation can be found in the Documentation folder as shown under Installation 

Folders.  

 

1.5 Samples 

Samples for each product component can be found in the Samples folder as shown under 

Installation Folders. 

1.6 Japanese Language Support 
Intel compilers provide support for Japanese language users. Error messages, visual 

development environment dialogs and some documentation are provided in Japanese in 

addition to English. By default, the language of error messages and dialogs matches that of 

your operating system language selection. Japanese-language documentation can be found in 

the ja_JP subdirectory for documentation and samples. 

Japanese language support will be available in an update on or after the release of Intel® C++ 

Composer XE 2013. 

If you wish to use Japanese-language support on an English-language operating system, or 

English-language support on a Japanese-language operating system, you will find instructions 

at http://intel.ly/qhINDv  

1.7 Technical Support 
If you did not register your compiler during installation, please do so at the Intel® Software 

Development Products Registration Center at http://registrationcenter.intel.com. Registration 
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entitles you to free technical support, product updates and upgrades for the duration of the 

support term.  

For information about how to find Technical Support, Product Updates, User Forums, FAQs, tips 

and tricks, and other support information, please visit 

http://www.intel.com/software/products/support/  

Note: If your distributor provides technical support for this product, please contact them for 

support rather than Intel. 

2 Installation 
The installation of the product requires a valid license file or serial number. If you are evaluating 

the product, you can also choose the “Evaluate this product (no serial number required)” option 

during installation. 

If you received your product on DVD, mount the DVD, change the directory (cd) to the top-

level directory of the mounted DVD and begin the installation using the command: 

./install.sh 

If you received the product as a downloadable file, first unpack it into a writeable directory of 

your choice using the command: 

tar –xzvf name-of-downloaded-file 

Then change the directory (cd) to the directory containing the unpacked files and begin the 

installation using the command: 

./install.sh 

Follow the prompts to complete installation. 

Note that there are several different downloadable files available, each providing different 

combinations of components.  Please read the download web page carefully to determine which 

file is appropriate for you. 

You do not need to uninstall previous versions or updates before installing a newer version – 

the new version will coexist with the older versions. 

Please do not run the install script as a background process (i.e. running “./install.sh &”). This is 

not supported. 

2.1 GUI installation now available in Intel® Composer XE 2013 SP1 
If on a Linux* system with GUI support, the installation will now provide a GUI-based installation. 

If a GUI is not supported (for example if running from an ssh terminal), a command-line 

installation will be provided. 
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2.2 Online Installation now available in Intel® Composer XE 2013 SP1 
The default electronic installation package for Intel® Composer XE 2013 SP1 now consists of a 

smaller installation package that dynamically downloads and then installs packages selected to 

be installed. This requires a working internet connection and potentially a proxy setting if you 

are behind an internet proxy. Full packages are provided alongside where you download this 

online install package if a working internet connection is not available. 

2.2.1 http_proxy is set, but sudo installation still fails to connect 

Most sudo profiles are set to not inherit certain settings like http_proxy from the original user. 

Make sure your /etc/sudoers file contains a line like the following to allow your proxy settings to 

propagate: 

Defaults env_keep += “http_proxy” 

2.3 Intel® Software Manager 
The installation now provides an Intel® Software Manager to provide a simplified delivery 

mechanism for product updates and provide current license status and news on all installed 

Intel® software products. 

You can also volunteer to provide Intel anonymous usage information about these products to 

help guide future product design. This option, the Intel® Software Improvement Program, is not 

enabled by default – you can opt-in during installation or at a later time, and may opt-out at any 

time. For more information please see http://intel.ly/SoftwareImprovementProgram. 

2.4 Installation of Intel® Manycore Platform Software Stack (Intel® MPSS) 
The Intel® Manycore Platform Software Stack (Intel® MPSS) may be installed before or after 

installing the Intel® Composer XE 2013 SP1 for Linux* including Intel® MIC Architecture 

product. 

Using the latest version of Intel® MPSS available is recommended. 

Refer to the Intel® MPSS documentation for the necessary steps to install the user space and 

kernel drivers.  

2.5 Cluster Installation 
To install a product on multiple nodes of a cluster on Linux*, the following steps should be 

taken: 

1) Run the installation on a system where Intel® Cluster Studio is installed. Also, passwordless 
ssh must be configured between machines in a cluster. 

2) On step "4 Options" there will be a "Cluster installation" option. The default 

value is "Current node". 

3) To install on a cluster, the user must select this option and then provide a machines.LINUX 

file with IP-addresses, hostnames, FQDNs, and other information for the cluster nodes (one 
node per line). The first line is expected to describe the current (master) node. 

4) Once the machines.LINUX file is provided, additional options will appear: Number of 

parallel installations, Check for shared installation directory. 
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5) When all options are configured and installation has begun, the installation will check 
connectivity with all nodes (a prerequisite) and only then will it install the product on these 
nodes. 

2.6 Silent Install 
For information on automated or “silent” install capability, please see http://intel.ly/ngVHY8. 

2.7 Using a License Server 
If you have purchased a "floating" license, see http://intel.ly/pjGfwC for information on how to 

install using a license file or license server. This article also provides a source for the Intel® 

License Server that can be installed on any of a wide variety of systems. 

2.8 Eclipse* Integration Installation 
Please refer to the section below on Eclipse Integration 

2.9 Security-Enhanced Linux* (SELinux*) 

In previous Composer XE versions, installation required setting the SELINUX mode to 

permissive. Starting with Composer XE 2013, this is no longer required. 

2.10 Known Installation Issues 

 On some versions of Linux, auto-mounted devices do not have the "exec" permission 

and therefore running the installation script directly from the DVD will result in an error 

such as: 

 

bash: ./install.sh: /bin/bash: bad interpreter: Permission denied 

 

If you see this error, remount the DVD with exec permission, for example: 

 

mount /media/<dvd_label> -o remount,exec 

 

and then try the installation again. 

 The product is fully supported on Ubuntu* and Debian* Linux distributions for IA-32 and 

Intel® 64 architecture systems as noted above under System Requirements. Due to a 

restriction in the licensing software, however, it is not possible to use the Trial License 

feature when evaluating IA-32 components on an Intel® 64 architecture system under 

Ubuntu or Debian. This affects using a Trial License only. Use of serial numbers, license 

files, floating licenses or other license manager operations, and off-line activation (with 

serial numbers) is not affected. If you need to evaluate IA-32 components of the product 

on an Intel® 64 architecture system running Ubuntu or Debian, please visit the Intel® 

Software Evaluation Center (http://intel.ly/nJS8y8) to obtain an evaluation serial number. 

2.11 Installation Folders 

The compiler installs, by default, under /opt/intel – this is referenced as <install-dir> 

in the remainder of this document. You are able to specify a different location, and can also 

perform a “non-root” install in the location of your choice. 
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The directory organization has changed since the Intel® Compilers 11.1 release. 

While the top-level installation directory has also changed between the original C++ Composer 

XE 2011 release and Composer XE 2013, the composerxe symbolic link can still be used to 

reference the latest product installation. 

Under <install-dir> are the following directories: 

 bin – contains symbolic links to executables for the latest installed version 

 lib – symbolic link to the lib directory for the latest installed version 

 include – symbolic link to the include directory for the latest installed version 

 man – symbolic link to the directory containing man pages for the latest installed version 

 ipp – symbolic link to the directory for the latest installed version of Intel® Integrated 

Performance Primitives 

 mkl – symbolic link to the directory for the latest installed version of Intel® Math Kernel 

Library 

 tbb – symbolic link to the directory for the latest installed version of Intel® Threading 

Building Blocks 

 ism – contains files for Intel® Software Manager 

 composerxe – symbolic link to the composer_xe_2013 directory 

 composer_xe_2013_sp1 – directory containing symbolic links to subdirectories for the 

latest installed Intel® Composer XE 2013 SP1 compiler release 

 composer_xe_2013_sp1.<n>.<pkg> - physical directory containing files for a 

specific compiler version. <n> is the update number, and <pkg> is a package build 

identifier. 

Each composer_xe_2013_sp1 directory contains the following directories that reference the 

latest installed Intel® Composer XE 2013 SP1 compiler: 

 bin – directory containing scripts to establish the compiler environment and symbolic 

links to compiler executables for the host platform 

 pkg_bin – symbolic link to the compiler bin directory  

 include – symbolic link to the compiler include directory 

 lib – symbolic link to the compiler lib directory 

 ipp – symbolic link to the ipp directory 

 mkl – symbolic link to the mkl directory 

 tbb – symbolic link to the tbb directory 

 debugger – symbolic link to the debugger directory 

 eclipse_support – symbolic link to the eclipse_support directory 

 man – symbolic link to the man directory 

 Documentation – symbolic link to the Documentation directory 

 Samples – symbolic link to the Samples directory 
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Each composer_xe_2013_sp1.<n>.<pkg> directory contains the following directories that 

reference a specific update of the Intel® Composer XE 2013 SP1 compiler: 

 bin – all executables 

 pkg_bin – symbolic link to bin directory 

 compiler – shared libraries and header files 

 debugger – debugger files 

 Documentation – documentation files 

 man – man pages 

 eclipse_support – files to support Eclipse integration 

 ipp – Intel® Integrated Performance Primitives libraries and header files 

 mkl – Intel® Math Kernel Library libraries and header files 

 tbb – Intel® Threading Building Blocks libraries and header files 

 Samples – Product samples and tutorial files 

 Uninstall – Files for uninstallation 

 .scripts – scripts for installation 

If you have both the Intel C++ and Intel Fortran compilers installed, they will share folders for a 

given version and update. 

This directory layout allows you to choose whether you want the latest compiler, no matter 

which version, the latest update of the Intel® Composer XE 2013 compiler, or a specific update.  

Most users will reference <install-dir>/bin for the compilervars.sh [.csh] script, 

which will always get the latest compiler installed. This layout should remain stable for future 

releases. 

2.12 Removal/Uninstall 
Removing (uninstalling) the product should be done by the same user who installed it (root or a 

non-root user). If sudo was used to install, it must be used to uninstall as well. It is not possible 

to remove the compiler while leaving any of the performance library or Eclipse* integration 

components installed. 

1. Open a terminal window and set default (cd) to any folder outside <install-dir> 

2. Type the command: <install-dir>/uninstall.sh  

3. Follow the prompts 

4. Repeat steps 2 and 3 to remove additional platforms or versions 

If you have the same-numbered version of Intel® Fortran Compiler installed, it may also be 

removed.  

If you have added the Intel C++ Eclipse integration to an instance of Eclipse in your 

environment, you will need to update your Eclipse configuration by removing the Intel integration 

extension site from your Eclipse configuration.  To do this, Go to Help > About Eclipse and click 
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on "Installation Details". Select "Intel(R) C++ Compiler XE 14.0 for Linux* OS " under "Installed 

Software" and click on "Uninstall..." Click "Finish". When asked to restart Eclipse, select "Yes". 

3 Intel® Many Integrated Core Architecture (Intel® MIC Architecture) 
This section summarizes changes, new features and late-breaking news about the Intel 

Composer XE 2013 for Linux* including Intel® MIC Architecture. 

3.1 About Intel® Composer XE 2013 for Linux* including Intel® MIC 

Architecture 
The Intel® Composer XE 2013 for Linux* including Intel® MIC Architecture extends the feature 

set of the Intel® C++ Composer XE 2013 and the Intel® Fortran Composer XE 2013 products 

by enabling predefined sections of code to execute on an Intel® Xeon Phi™ coprocessor. 

These sections of code run on the coprocessor if it is available. Otherwise, they run on the host 

CPU. 

This document uses the terms coprocessor and target to refer to the target of an offload 

operation. 

The current components of Intel® Composer XE 2013 that support Intel® MIC Architecture are 

the: 

 Intel® C++ and Fortran Compilers 

 Intel® Math Kernel Library (Intel® MKL) 

 Intel® Threading Building Blocks (Intel® TBB) 

 Eclipse* IDE Integration 

 Debugger:  

o GNU* GDB 

o Intel® Debugger 

3.2 Compatibility 
This release supports the Intel® Xeon Phi™ coprocessor. Refer to the Technical Support 

section for additional information. 

It’s recommended to rebuild all code with Composer XE 2013 update 1 or later due to this 

binary compatibility change in the offload libraries. 

3.3 Getting Started 
There is only one compiler that generates code both for Intel® 64 architecture and for Intel® 

MIC Architecture.  Refer to the section on Establishing the Compiler Environment to get started, 

using intel64 as the architecture you setup for.  Refer to the Notes section below for further 

changes. 
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3.4 Product Documentation 
Documentation concerning the Intel® MIC Architecture for Composer XE 2013 SP1 can be 

found in the Composer XE Documentation directory.  

3.5 Debugger 
Documentation concerning the Intel® MIC Architecture for Composer XE 2013 SP1 can be 

found here:  

<installdir>\Documentation\en_US\debugger\gdb\mic\eclmigdb_config_guid

e.pdf   

3.5.1 GNU* GDB 

See the section GNU* GDB Debugger. 

3.5.2 Intel® Debugger 

See the section Intel® Debugger (IDB). 

3.6 Intel® Math Kernel Library (Intel® MKL) 
For details on Intel® MIC Architecture support, see the section on Intel MKL. 

3.7 Notes 

3.7.1 Intel C++ Compiler 

3.7.1.1 Using offload code in shared libraries requires main program to be linked with –

offload=mandatory or –offload=optional option 

There is initialization required for offload that can only be done in the main program. For offload 

code in shared libraries, this means that the main program must also be linked for offload so 

that the initialization happens. This will happen automatically if the main code or code statically 

linked with the main program contains offload constructs. If that is not the case, you will need to 

link the main program with the –offload=mandatory or –offload=optional compiler 

options. 

3.7.1.2 New offload clauses in Intel® Composer XE 2013 SP1 

The three clauses “mandatory”, “optional”, and “status” have been added to the offload 

directives in Intel® Composer XE 2013 SP1. 

 “mandatory”: Offloaded code aborts if card not available for offload, if “status” clause not 

added. If “status” clause added, user code directs action. 

 “optional”: If card is not available for download, code runs on CPU. 

These clauses in code override offload compiler option settings. 

3.7.1.3 –offload option changed in Intel® Composer XE 2013 SP1 

-offload now takes a keyword in Composer XE 2013 SP1 



Intel® C++ Composer XE 2013 SP1 for Linux* 
Installation Guide and Release Notes  18 

-offload=none: Any offload directives are ignored and cause warnings to be emitted at compile-

time 

-offload=mandatory (default): Any offload directives are processed. If card is not available for 

offload, program aborts. 

-offload=optional: Any offload directives are processed. If card is not available, code runs on 

CPU. 

These options are overridden by user-specified offload clauses. 

3.7.1.4 New environment variables to control offload behavior in Intel® Composer XE 

2013 SP1 

Several new environment variables have been added: 

 OFFLOAD_DEVICES: Restricts the process to use only the Intel® Xeon™ Phi 

coprocessor cards specified by the variable.  

 OFFLOAD_INIT: Specifies a hint to the offload runtime when it should initialize Intel® 

Xeon™ Phi coprocessors. 

 OFFLOAD_REPORT: Supports several levels of tracing and statistical information from 

offload. 

 OFFLOAD_ACTIVE_WAIT: Controls keeping the CPU busy during DMA transfers. 

3.7.1.5 Runtime errors or crashes when running an application built with the initial 

Intel® Composer XE 2013 product release with the offload libraries from 2013 

update 1 

There is a breaking binary compatibility change in the offload libraries for Intel® Composer XE 

2013 update 1 that will cause runtime errors or crashes if you use the libraries from update 1 or 

later with a binary built with the initial release of the Intel Composer XE 2013 compiler.  

Examples of the errors you may observe in this situation are: 

Error 1: 

***Warning: offload to device #0 : failed 

Error 2: 

Segmentation fault (core dumped) 

Error 3: 

terminate called after throwing an instance of 'COIRESULT' 

terminate called recursively 

 

Error 4: 

CARD--ERROR:1 myoiPageFaultHandler: (nil) Out of Range! 
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CARD--ERROR:1 _myoiPageFaultHandler: (nil) switch to default signal 

handle 

CARD--ERROR:1 Segment Fault! 

HOST--ERROR:myoiScifGetRecvId: Call recv() Header Failed ! errno = 104 

^CHOST--ERROR:myoiScifSend: Call send() Failed! errno = 104 

HOST--ERROR:myoiSend: Fail to send message! 

HOST--ERROR:myoiBcastToOthers: Fail to send message to 1! 

HOST--ERROR:myoiBcast: Fail to send message to others! 

 

To resolve these issues, you should recompile your application fully with the Intel Composer XE 

2013 update 1 or newer compiler in order to use the offload libraries included in the new 

package. 

3.7.1.6 Default code generation no longer supports Intel® Xeon Phi™ coprocessor A0 

stepping in Composer XE 2013 Update 1 

Composer XE 2013 update 1 now generates new streaming store instructions that were 

introduced in the Intel® Xeon Phi™ coprocessor B0 stepping. These instructions are not 

supported on the A0 stepping, and will cause runtime errors. If you require your application to 

run on A0 steppings, use the option –opt-streaming-stores never to avoid generating 

these instructions. This may decrease performance on B0 or later steppings. 

3.7.1.7 Missing symbols not detected at link time 

In the offload compilation model, the binaries targeting the Intel® MIC Architecture are 

generated as dynamic libraries (.so).  Dynamic libraries do not need all referenced variables or 

routines to be resolved during linking as these can be resolved during load time. This behavior 

could mask some missing variable or routine in the application resulting in a failure during load 

time. In order to identify and resolve all missing symbols at link time, use the following command 

line option to list the unresolved variables. 

-offload-option,mic,compiler,"-z defs"  

3.7.1.8 *MIC* tag added to compile-time diagnostics 

The compiler diagnostics infrastructure is modified to add an additional offload *MIC* tag to the 

output message to allow differentiation from the Target (Intel® MIC Architecture) and the host 

CPU compilations. The additional tag appears only in the Target compilation diagnostics issued 

when compiling with offload extensions for Intel® MIC Architecture. 

In the examples below the sample source programs trigger identical diagnostics during both the 

host CPU and Target Intel® MIC Architecture compilations; however, some programs will 

generate different diagnostics during these two compilations. The new tag permits easier 

association with either the CPU or Target compilation. 

$ icc -c sample.c 

sample.c(1): warning #1079: *MIC* return type of function "main" must 

be "int" 

  void main() 

       ^ 
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sample.c(5): warning #120: *MIC* return value type does not match the 

function type 

      return 0; 

             ^ 

 

sample.c(1): warning #1079: return type of function "main" must be 

"int" 

  void main() 

       ^ 

 

sample.c(5): warning #120: return value type does not match the 

function type 

      return 0; 

 

3.7.1.9 Runtime Type Information (RTTI) not supported 

Runtime Type Information (RTTI) is not supported under the Virtual-Shared memory 

programming method; specifically, use of dynamic_cast<> and typeid() is not supported. 

3.7.1.10 Direct (native) mode requires transferring runtime libraries like libiomp5.so to 

coprocessor 

The Intel® Manycore Platform Software Stack (Intel® MPSS) no longer includes Intel compiler 

libraries under /lib, for example the OpenMP* library, libiomp5.so. 

When running OpenMP* applications in direct mode (i.e. on the coprocessor card), users must 

first upload (via scp) a copy of the Intel® MIC Architecture OpenMP* library 

(<install_dir>/compiler/lib/mic/libiomp5.so) to the card (device names will be of 

the format micN, where the first card will be named mic0, the second mic1, and so on) before 

running their application. 

Failure to make this library available will result in a run-time failure like: 

/libexec/ld-elf.so.1: Shared object "libiomp5.so" not found, required 

by "sample" 

This can also apply to other compiler runtimes like libimf.so. The required libraries will depend 

on the application and how it’s built. 

3.7.1.11 Calling exit() from an offload region 

When calling exit() from within an offload region, the application terminates with an error 

diagnostic “offload error: process on the device 0 unexpectedly exited 

with code 0” 

4 Intel® C++ Compiler 
This section summarizes changes, new features and late-breaking news about the Intel C++ 

Compiler. 
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4.1 Compatibility 
In version 11.0, the IA-32 architecture default for code generation changed to assume that 

Intel® Streaming SIMD Extensions 2 (Intel® SSE2) instructions are supported by the processor 

on which the application is run.  See below for more information. 

4.2 New and Changed Features 
C++ Composer XE 2013 SP1 now contains Intel® C++ Compiler XE 14.0.  The following 

features are new or significantly enhanced in this version.  For more information on these 

features, please refer to the documentation. 

 New Intel® Cilk™ Plus STL vector reducer in Intel® C++ Composer XE 2013 SP1 

update 2 

 New intrinsic _allow_cpu_features in Intel® C++ Composer XE 2013 SP1 update 1 

 The this pointer is now allowed in the Intel® Cilk™ Plus SIMD-enabled function 

uniform clause (i.e. __declspec(vector(uniform(this)))) in Intel® C++ 

Composer XE 2013 SP1 update 1 

 New Numeric String Conversion Library libistrconv in Intel® C++ Composer XE 2013 

SP1 update 1 

 Features from C++11 (-std=c++11) 

o Complete (instead of partial) implementation of initializer lists. See N2672 and 

N3217. 

o Complete implementation of inline namespaces. See N2535. 

o Complete implementation of non-static data member initializers. See N2756. 

o Complete implementation of generalized constant expressions. See N2235. 

o Complete implementation of unrestricted unions. See N2544. 

o Delegating constructors. See N1986. 

o Rvalue references for *this. See N2439. 

o Raw string literals. See N2442. 

o Conversions of lambdas to function pointers. 

o Implicit move constructors and assignment operators. See N3053. 

o __bases and __direct_bases type traits. 

o The context-sensitive keyword "final" can now be used on a class definition, and 

"final" and "override" can be used on member function declarations.  See N2928, 

N3206, and N3272. 

o Complete implementation of the "noexcept" specifier and operator.  See N3050. 

Includes the late instantiation of noexcept per core issue 1330. 

 Partial OpenMP* 4.0 RC1 and TR1 support 

 Intel® Cilk™ Plus changes in Intel® C++ Composer XE 2013 SP1 

 DWARF V4 support 

 __INTEL_COMPILER_UPDATE predefined macro 

 Pointer type alignment qualifiers 

 Variable definition attributes to avoid false sharing 

 -mtune performance tuning option 



Intel® C++ Composer XE 2013 SP1 for Linux* 
Installation Guide and Release Notes  22 

4.2.1 New Intel® Cilk™ Plus STL vector reducer in Intel® C++ Composer XE 2013 SP1 

update 2 

In update 2, a reducer_vector class is now provided. The header file 

“cilk/reducer_vector.h” will need to be included. The reducer type is cilk::reducer< 

cilk::op_vector<type> >. See the header file comments for further specifics. 

4.2.2 New intrinsic _allow_cpu_features in Intel® C++ Composer XE 2013 SP1 

update 1 

This new intrinsic _allow_cpu_features([xxx][,xxx]) is added to immintrin.h. It tells 

the compiler that the code region following it may be targeted for processors with the specified 

feature(s) so some specific optimizations may be performances. 

Note: support of this intrinsic is preliminary, not all of the compilers optimization phases can be 

taken place in the code region. 

Please reference Compiler documentation for detailed information with code sample, and the 

article New intrinsic _allow_cpu_features support for additional information. 

4.2.3 The this pointer is now allowed in the Intel® Cilk™ Plus SIMD-enabled function 

uniform clause (i.e.  __declspec(vector(uniform(this)))) in Intel® C++ 

Composer XE 2013 SP1 update 1 

When a uniform class object calls a SIMD-enabled class member function, explicitly specifying 

“uniform(this)” clause in the callee’s SIMD declaration may improve performance (how 

much depends on how the “this” keyword is used inside the callee). The usage model is the 

same as the uniform clause applied to formal parameters. 

Please reference Compiler documentation for detailed information.  

4.2.4 New Numeric String Conversion Library libistrconv in Intel® C++ Composer XE 

2013 SP1 update 1 

This New Numeric String Conversion Library, libistrconv, provides a collection of routines 

for converting between ASCII strings and C data types, which are optimized for performance. 

The new APIs are declared in the header file “istrconv.h”.  

Please reference Compiler documentation for detailed information.  

4.2.5 Updated Support for Upcoming OpenMP* features added in Composer XE 2013 

SP1 

Composer XE 2013 SP1 adds partial support for OpenMP* 4.0 features. The features supported 

as defined in the OpenMP* 4.0 specifications available from http://openmp.org are: 

 TEAMS pragmas, directives and clauses 

 DISTRIBUTE pragmas, directive and clauses 

 SIMD pragmas, directives, and clauses  

 TARGET pragmas, directives and clauses for attached coprocessors (or devices) 

 #pragma omp taskgroup construct 

http://software.intel.com/en-us/articles/new-intrinsic-allow-cpu-features-support
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 Atomic clause seq_cst 

 Six new forms of atomic capture and update: 

o Atomic swap: {v = x; x = expr;} 

o Atomic update: x = expr binop x; 

o Atomic capture 1: v = x = x binop expr; 

o Atomic capture 2: v =x = expr binop x; 

o Atomic capture 3: {x = expr binop x; v = x;} 

o Atomic capture 4: {v = x; x = expr binop x;} 

 proc_bind(<type>) clause where <type> is “spread”, “close”, or “master” 

 OMP_PLACES environment variable 

 OMP_PROC_BIND environment variable 

 omp_get_proc_bind() API 

For more information, see http://intel.ly/W7CHjb. 

4.2.6 Intel® Cilk™ Plus changes in Intel® C++ Composer XE 2013 SP1 

Please note the following new features for Intel® Cilk™ Plus in Intel C++ Composer XE 2013 

SP1: 

 SIMD enabled function implementation has changed to be more compatible with other 

vector function implementations in gcc and OpenMP*. This breaks binary compatibility 

with previous Intel® C++ Compiler versions (13.1 and earlier). You should either rebuild 

all codes using SIMD enabled functions with the version 14.0 compiler, or use the –

vecabi=legacy compiler option to use the previous implementation. 

 New multiply reducer defined in cilk/reducer_opmul.h 

 Three new array notation reduction intrinsics have been added to support bitwise 

reduction operations: 

o __sec_reduce_and 

o __sec_reduce_or 

o __sec_reduce_xor 

4.2.7 New attribute for pointers and pointer types to specify assumed data alignment in 

Composer XE 2013 SP1 

__declspec(align_value(N)) and __attribute__((align_value(N))) have been added to indicate to 

the compiler it can assume the specified alignment “N” when using the attributed pointer type. 

For example: 

typedef float float_a16  

__attribute__((align_value (16))); 

 

void foo(float_a16 *restrict dest, float_a16 *restrict src){ 

 

Let’s the compiler know that the src and dest arguments should be aligned by the user on 16-

byte boundaries. 
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4.2.8 New attribute to variable declarations to avoid false sharing in Composer XE 2013 

SP1 

__declspec(avoid_false_share)/__attribute__((avoid_false_share)) and 

__declspec(avoid_false_share(identifier))/__attribute__((avoid_false_share(identifier))) have 

been added to indicate to the compiler that the variable attributed should be suitably padded or 

aligned to avoid false sharing with any other variable. If an identifier is specified, then any 

variables attributed with that identifier will be padded or aligned to avoid false sharing with any 

other variables except those others with the same identifier. These attributes must be on 

variable definitions in function, global, or namespace scope. If in function scope, the scope of 

the identifier is the current function. If the variable definition is in global or namespace scope, 

the scope of the identifier is in the current compilation unit. 

4.2.9 New __INTEL_COMPILER_UPDATE predefined macro in Composer XE 2013 SP1 

A new __INTEL_COMPILER_UPDATE predefined macro can now be used to obtain the minor 

update number for the Intel® Compiler being used. For example, for a compiler version 14.0.2, 

the macro would preprocess to “2”. 

4.2.10 Static Analysis Feature (formerly “Static Security Analysis” or “Source Checker”) 

Requires Intel® Inspector XE 

The “Source Checker” feature, from compiler version 11.1, has been enhanced and renamed 

“Static Analysis”.  The compiler options to enable Static Analysis remain the same as in 

compiler version 11.1 (for example, -diag-enable sc), but the results are now written to a 

file that is interpreted by Intel® Inspector XE rather than being included in compiler diagnostics 

output. 

4.3 New and Changed Compiler Options 
For details on these and all compiler options, see the Compiler Options section of the on-disk 

documentation. 

4.3.1 New compiler option /Qcheck-pointers-mpx (-check-pointers-mpx) to 

support the Intel® Memory Protection Extensions (Intel® MPX) (Update 1) 

This option will cause the compiler to generate code which uses the Intel® Memory 

Protection Extensions (Intel® MPX) for performance acceleration of Pointer Checker. If the 

target platform does not support Intel® MPX, Pointer Checker features will operate as no-

ops. See the Introduction to Intel® Memory Protection Extensions for some details about 

Intel® MPX.  

Please see Compiler Options section of the documentation for detailed information about 

this new option.  

4.3.2 New compiler option -f[no-]mpc_privatize to enable privatization of all static data 

for the MultiProcessor Communications environment (MPC) unified parallel 

runtime. (Update 1)  

This option will cause calls to extended thread local storage resolution run-time routines that 

are not supported on standard Linux distributions. This option is only usable in conjunction 

with the MPC unified parallel runtime.  The default is off (-fno-mpc_privatize). 

http://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
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This option is only available in the Intel C++ and Fortran Composer XE 2013 SP1 for Linux 

targeting Intel® 64 architecture and Intel® MIC Architecture. 

Please see Compiler Options section of the documentation for detailed information.  

4.3.3 New compiler option /Q[a]xMIC-AVX512(-[a]xMIC-AVX512) for Intel® Advanced 

Vector Extensions 512 (Intel® AVX-512) instructions support  (Update 1)  

This option may generate Intel(R) AVX-512 Foundation instructions, Intel(R) AVX-512 

Conflict Detection instructions, Intel(R) AVX-512 Exponential and Reciprocal instructions, 

Intel(R) AVX-512 Prefetch instructions for Intel(R) processors and the instructions enabled 

with CORE-AVX2. It lets compiler to optimize for Intel(R) processors that support Intel(R) 

AVX-512 instructions. 

Please see Compiler Options section of the documentation for detailed information, and see 

AVX-512 instructions article for more about the new instructions.  

4.3.4 /Qopt-gather-scatter-unroll(-opt-gather-scatter-unroll) for targeting Intel® MIC 

Architecture (Update 1)  

This option lets you specify an alternative loop unroll sequence for gather and scatter loops 

on Intel® MIC Architecture. It is only available on Intel® 64 architecture targeting Intel® MIC 

Architecture. 

Please see Compiler Options section of the documentation for detailed information. 

4.3.5 New and Changed in Composer XE 2013 SP1 

 -[no-]openmp-offload 

 -[no-]openmp-simd 

 -xATOM_SSE4.2 

 -xATOM_SSSE3 

 -vecabi=<arg> 

 -gdwarf-4 

 -standalone 

 -offload=<arg> 

 -mtune=<arch> 

 -mlong-double-64 

 -mlong-double-80 

For a list of deprecated compiler options, see the Compiler Options section of the 

documentation. 

4.3.6 –[no-]openmp-offload and –[no-]openmp-simd added to Composer XE 2013 SP1 

These two options allow you to enable/disable the TARGET and SIMD features of OpenMP* 4.0 

independently of support of the rest of OpenMP* (enabled with –openmp). When –openmp is 

specified, -openmp-offload and –openmp-simd are set as well, allowing the use of these 

features. 

http://software.intel.com/en-us/blogs/2013/avx-512-instructions
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4.3.7 –mtune added to Composer XE 2013 SP1 

-mtune=<arch> can now be used to specify the compiler “tuning” for a specific architecture, 

similar to how the equivalent gcc* option behaves. 

4.3.8 –gdwarf-4 added to Composer XE 2013 SP1 

Support for generating DWARF V4 debug information is now available via the –gdwarf-4 option. 

4.3.9 -vec-report7 added to Composer XE 2013 Update 2 

A new vectorizer reporting level has been added to update 2 to provide more detailed and 

advanced information on loop vectorization.  See the article at http://intel.ly/XeSkW6 for more 

information. 

4.3.10 –gcc-version is deprecated in Composer XE 2013 Update 2 

-gcc-version functionality has been superseded by –gcc-name. –gcc-version has therefore been 

deprecated and may be removed from a future release. 

4.4 Other Changes 

4.4.1 KMP_DYNAMIC_MODE Environment Variable Support for “asat” Deprecated  

Support for “asat” (automatic self-allocating threads) by the environment variable 

KMP_DYNAMIC_MODE is now deprecated, and will be removed in a future release.   

4.4.2 __attribute__((always_inline)) now requires inline keyword to enable inlining with 

Composer XE 2013 SP1 

In previous Intel compiler versions, a routine declared with the "always_inline" attribute would 

always be inlined. In Composer XE 2013 SP1, the compiler now requires that the routine also 

be inline (either explicitly declared that way using the "inline" keyword or implicitly inline 

because it is a member function whose definition appears inside the class) in order for the 

routine to be inlined. The compiler will now match gcc behavior and also give a warning for this, 

i.e.:  

// t.cpp  

__attribute__((always_inline)) int foo2(int x)  // need to add 

"inline" keyword also  

{  

  return x;  

}  

 

icpc -c t.cpp  

t.cpp(2): warning #3414: the "always_inline" attribute is ignored on 

non-inline functions  

  __attribute__((always_inline)) int foo2(int x)  

                ^ 
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4.4.3 Establishing the Compiler Environment 

The compilervars.sh script is used to establish the compiler environment. 

compilervars.csh is also provided. 

The command takes the form: 

source <install-dir>/bin/compilervars.sh argument 

Where argument is either ia32 or intel64 as appropriate for the architecture you are 

building for. Establishing the compiler environment also establishes the environment for the 

Intel® Debugger, provided GNU* GDB (gdb-ia), Intel® Performance Libraries and, if present, 

Intel® Fortran Compiler. 

4.4.4 Instruction Set Default Changed to Require Intel® Streaming SIMD Extensions 2 

(Intel® SSE2) 

When compiling for the IA-32 architecture, -msse2 (formerly -xW) is the default.  Programs built 

with –msse2 in effect require that they be run on a processor that supports the Intel® Streaming 

SIMD Extensions 2 (Intel® SSE2), such as the Intel® Pentium® 4 processor and some non-Intel 

processors. No run-time check is made to ensure compatibility – if the program is run on an 

unsupported processor, an invalid instruction fault may occur.  Note that this may change 

floating point results since the Intel® SSE instructions will be used instead of the x87 

instructions and therefore computations will be done in the declared precision rather than 

sometimes a higher precision. 

All Intel® 64 architecture processors support Intel® SSE2. 

To specify the older default of generic IA-32, specify –mia32 

4.5 Known Issues 

4.5.1 __GXX_EXPERIMENTAL_CXX0X__ Macro Not Supported 

In the Gnu* version 4.8 or later environments, using the -std=c++11 or -std=gnu++0x 

options may lead to a diagnostic of the form: 

This file requires compiler and library support for the upcoming ISO 

C++ standard, C++0x. This support is currently experimental, and must 

be enabled with the -std=c++0x or -std=gnu++0x compiler options. 

The Intel compiler does not currently define the __GXX_EXPERIMENTAL_CXX0X__ macro in 

gcc 4.8 mode, since it does not yet support some C++11 features enabled by the macro in the 

C++ standard library headers. This may lead to incompatibilities with g++ when using the C++ 

standard library in the -std=c++11 or -std=gnu++0x modes. 

4.5.2 Missing documentation for functions to check decimal floating-point status 
 

To detect exceptions occurring during decimal floating-point arithmetic, use the following 

floating-point exception functions: 
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Function  Brief Description  

fe_dec_feclearexcept Clears the supported floating-point exceptions 

fe_dec_fegetexceptflag Stores an implementation-defined representation of the states 

of the floating-point status flags 

fe_dec_feraiseexcept Raises the supported floating-point exceptions  

fe_dec_fesetexceptflag Sets the floating-point status flags  

fe_dec_fetestexcept Determines which of a specified subset of the floating point 

exception flags are currently set 

 

The decimal floating-point exception functions are defined in the fenv.h header file. 

Similar binary floating-point exception functions are described in ISO C99. 

To compile the source using DFP, use the preprocessor macro __STDC_WANT_DEC_FP__. 

4.5.3 Intel® Cilk™ Plus Known Issues 

 Static linkage of the runtime is not supported  

 

Static versions of the Intel® Cilk™ Plus library are not provided by design.  Using –

static-intel to link static libraries will generate an expected warning that the 

dynamic version of the of Intel® Cilk™ Plus library, libcilkrts.so, is linked. 

 

$ icc -static-intel sample.c 

 

icc: warning #10237: -lcilkrts linked in dynamically, static 

library not available 

 

Alternatively, you can build the open source version of Intel Cilk Plus with a static 

runtime.  See http://cilk.com for information on this implementation of Intel Cilk Plus. 

4.5.4 Guided Auto-Parallel Known Issues 

Guided Auto Parallel (GAP) analysis for single file, function name or specific range of source 

code does not work when Whole Program Interprocedural Optimization (-ipo) is enabled 

4.5.5 Static Analysis Known Issues 

4.5.5.1 Excessive false messages on C++ classes with virtual functions 

Note that use of the Static Analysis feature also requires the use of Intel® Inspector XE. 
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Static analysis reports a very large number of incorrect diagnostics when processing any 
program that contains a C++ class with virtual functions.  In some cases the number of spurious 
diagnostics is so large that the result file becomes unusable.   
 
If your application contains this common C++ source construct, add the following command line 

switch to suppress the undesired messages: /Qdiag-disable:12020,12040 (Windows) or 

–diag-disable 12020,12040 (Linux).  This switch must be added at the link step 

because that is when static analysis results are created.  Adding the switch at the compile 
step alone is not sufficient.  
 

If you are using a build specification to perform static analysis, add the –disable-id 

12020,12040 switch to the invocation of the inspxe-runsc, for example, 
 inspxe-runsc –spec-file mybuildspec.spec -disable-id 12020,12040 

 
If you have already created a static analysis result that was affected by this issue and you are 
able to open that result in the Intel® Inspector XE GUI, then you can hide the undesired 
messages as follows: 

 The messages you will want to suppress are “Arg count mismatch” and “Arg type 

mismatch”.  For each problem type, do the following: 

 Click on the undesired problem type in the Problem filter.  This hides all other problem 
types. 

 Click on any problem in the table of problem sets 

 Type control-A to select all the problems 

 Right click and select Change State -> Not a problem from the pop-up menu to set the 
state of all the undesired problems 

 Reset the filter on problem type to All 

 Repeat for the other unwanted problem type 

 Set the Investigated/Not investigated filter to Not investigated.  You may have to scroll 
down in the filter pane to see it as it is near the bottom. This hides all the undesired 
messages because the “Not a problem” state is considered a “not investigated” state. 

5 GNU* GDB Debugger 
This section summarizes the changes, new features, customizations and known issues related 

to the GNU* GDB provided with Intel® Composer XE 2013 SP1. 

5.1 Features 
GNU* GDB provided with Intel® Composer XE 2013 SP1 is based on GDB 7.5 with 

enhancements provided by Intel. This debugger is planned to replace the Intel® Debugger in a 

future release. In addition to features found in GDB 7.5, there are several other new features: 

 Support for Intel® Many Integrated Core Architecture (Intel® MIC Architecture) 

 Support for Intel® Transactional Synchronization Extensions (Intel® TSX) 

 Register support for Intel® Memory Protection Extensions (Intel® MPX) and Intel® 

Advanced Vector Extensions 512 (Intel® AVX-512) 

 Data Race Detection (pdbx): 

Detect and locate data races for applications threaded using POSIX* thread (pthread) or 

OpenMP* models 
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 Branch Trace Store (btrace): 

Record branches taken in the execution flow to backtrack easily after events like 

crashes, signals, exceptions, etc. 

 Pointer Checker: 

Assist in finding pointer issues if compiled with Intel® C++ Compiler and having Pointer 

Checker feature enabled (see Intel® C++ Compiler documentation for more information) 

5.2 Pre-requisites 
In order to use the provided GNU* GDB Python* version 2.4, 2.6 or 2.7 is required. 

5.3 Using GNU* GDB 
GNU* GDB provided with Intel® Composer XE 2013 SP1 comes in different versions: 

 IA-32/Intel® 64 debugger: 

Debug applications natively on IA-32 or Intel® 64 systems. 

 Intel® Xeon Phi™ coprocessor debugger: 

Debug applications remotely on Intel® Xeon Phi™ coprocessor systems. The debugger 

will run on a host system and a debug agent (gdbserver) on the coprocessor. 

There are two options: 

o Use the command line version of the debugger. This only works for native Intel® 

Xeon Phi coprocessor applications. 

o Use the Eclipse* IDE plugin. This works only for offload enabled Intel® Xeon Phi 

coprocessor applications. Native applications need to be debugged with the 

command line version. 

To use any of the above versions of GNU* GDB source the following script: 

source <install-dir>/bin/debuggervars.[sh|csh] 

Please make sure to source the above script always before using the debugger. 

5.3.1 IA-32/Intel® 64 Debugger 

To start GNU* GDB provided with Intel® Composer XE use the following command: 

$ gdb-ia 

This debugger is designed to debug IA-32 or Intel® 64 applications natively. Its use is no 

different than with traditional GNU* GDB debuggers. There are some extensions, though, which 

can be found in the documentation. 

5.3.2 Intel® Xeon Phi™ Coprocessor Debugger 

Debugging applications for the Intel® Xeon Phi™ coprocessor is different to debugging local 

applications because of the difference of host and target. The host is running the debugger 

GNU* GDB. This system can be the host containing the coprocessor cards or any other 

development host. The target, here the coprocessor itself, executes a debug agent 

(gdbserver) to which the host connects to. 

There are two options to start a debug session on the host: 
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1. Command line version of the debugger: 

The debug agent needs to be transferred to the Intel® Xeon Phi™ coprocessor first: 

$ scp <install-dir>/debugger/gdb/target/mic/bin/gdbserver  

      mic0:/tmp 

 

Start GNU* GDB and connect to the coprocessor, e.g.: 

$ gdb-mic 

(gdb) target extended-remote | ssh mic0 /tmp/gdbserver --multi – 

 

To load and execute an application on the coprocessor issue the following commands: 

(gdb) file <path_on_host>/application 

(gdb) set remote exec-file <path_on_target>/application 

 

To attach to a process already running on the coprocessor with PID <pid> issue the 

following commands: 

(gdb) file <path_on_host>/application 

(gdb) attach <pid> 

 

2. Eclipse* IDE: 

Make sure that debuggervars.[sh|csh] is sourced in the same environment as 

Eclipse* IDE is being started (see above). 

 

Before starting Eclipse IDE, additional environment variables need to be set in order to 

debug offload enabled Intel® Xeon Phi™ applications. Depending on the version of the 

Intel® Manycore Platform Software Stack (Intel® MPSS) set the following variables: 

 Intel® MPSS 3.1: 

AMPLXE_COI_DEBUG_SUPPORT=TRUE 

MYO_WATCHDOG_MONITOR=-1 

 Intel® MPSS 2.1: 

COI_SEP_DISABLE=FALSE 

MYO_WATCHDOG_MONITOR=-1 

 

To use the new GNU* GDB back-end for debugging Intel® Xeon Phi™ applications a 

plugin needs to be installed. It can be found under <install-dir>/debugger/cdt/:
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Ensure that “Group items by category” is not checked. There might be a warning 

regarding unsigned content. This can be ignored. 

 

After installation and restart, create a new debug configuration for “C/C++ Application”, 

click on “Select other…” and select “MPM (DSF) Create Process Launcher”: 

 
Switch to tab “Debugger” and select the following script: 

<install-dir>/debugger/mpm/bin/start_mpm.sh 
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Note: 

Currently only offload enabled Intel® Xeon Phi™ applications can be debugged. 

5.4 Documentation 
The documentation for the provided GNU* GDB can be found here: 

<install-dir>/Documentation/[en_US|ja_JP]/debugger/gdb/gdb.pdf 

<install-

dir>/Documentation/[en_US|ja_JP]/debugger/gdb/mic/eclmigdb_config_guid

e.pdf 

5.5 Known Issues and Changes 

5.5.1 Safely ending offload debug sessions 

To avoid issues like orphan processes or stale debugger windows when ending offload 

applications, manually end the debugging session before the application is reaching its exit 

code. The following procedure is recommended for terminating a debug session. 

 Manually stop a debug session before the application reaches the exit-code.  

 When stopped, press the red stop button in the toolbar in the Intel® MIC Architecture-

side debugger first. This will end the offloaded part of the application. 

 Next, do the same in the CPU-side debugger. 

 The link between the two debuggers will be kept alive. The Intel® MIC Architecture-side 

debugger will stay connected to the debug agent and the application will remain loaded 

in the CPU-side debugger, including all breakpoints that have been set. 

 At this point, both debugger windows can safely be closed. 

5.5.2 Intel® MIC Architecture-side debugger asserts on setting source directories 

Setting source directories in the GNU* GDB might lead to an assertion. 
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Resolution: 

The assertion should not affect debugger operation. To avoid the assertion anyway, don’t use 

source directory settings. The debugger will prompt you to browse for files it cannot locate 

automatically. 

5.5.3 Accessing _Cilk_shared variables in the debugger 

Writing to a shared variable in an offloaded section from within the CPU-side debugger before 

the CPU-side debuggee has accessed that variable may result in loss of the written value/might 

display a wrong value or cause the application to crash. 

Consider the following code snippet: 

_Cilk_shared bool is_active; 

_Cilk_shared my_target_func() { 

//Accessing “is_active” from the debugger *could* lead to unexpected 

//results e.g. a lost write or outdated data is read. 

is_active = true; 

//Accessing "is_active" (read or write) from the debugger at this 

//point is considered safe e.g. correct value is displayed. 

} 

6 Intel® Debugger (IDB) 
Intel® Debugger (IDB) is available as host debugger for IA-32 and Intel® 64 applications, as 

well as for the Intel® Xeon Phi™ coprocessor. 

6.1 Support Deprecated for Intel® Debugger 
In a future major release of the product, the Intel® Debugger may be removed. This impacts all 

components and features described in this section. 

New users should use the GNU* GDB debugger components instead. 

6.2 Using Intel® Debugger 
Intel® Debugger provided with Intel® Composer XE 2013 SP1 comes in different versions: 

 IA-32/Intel® 64 debugger: 

Debug applications natively on IA-32 or Intel® 64 systems. 

 Intel® Xeon Phi™ coprocessor debugger: 

Debug applications remotely on Intel® Xeon Phi™ coprocessor systems. The debugger 

will run on a host system and a debug agent (idbserver_mic) on the coprocessor. 

There are two options: 

o Use the command line version of the debugger. This only works for native Intel® 

Xeon Phi coprocessor applications. 

o Use the Eclipse* IDE plugin. This works for both native and offload enabled 

Intel® Xeon Phi coprocessor applications. 

To use any of the above versions of Intel® Debugger source the following script: 

source <install-dir>/bin/idbvars.[sh|csh] [ia32|intel64] 
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Depending on the desired architecture either choose ia32 (for IA-32) or intel64 (for Intel® 

64). Please make sure to source the above script always before using the debugger. 

6.2.1 IA-32/Intel® 64 Debugger 

To start Intel® Debugger provided with Intel® Composer XE use the following command: 

$ idb (stand-alone GUI version) 

or 

$ idbc (command line version) 

This debugger is designed to debug IA-32 or Intel® 64 applications natively. Additional 

documentation can be found at Documentation section. 

Note: 

Any version requires idbvars.[sh|csh] to be sourced in the same environment as started. 

The stand-alone GUI above does not require an existing Eclipse* IDE. However, there is a 

dedicated plug-in for Eclipse* IDE available as well. It can be found under 

<install-dir>/eclipse_support/cdt8.0/: 

 
Ensure that “Group items by category” is not checked. There might be a warning regarding 

unsigned content. This can be ignored. 



Intel® C++ Composer XE 2013 SP1 for Linux* 
Installation Guide and Release Notes  36 

This allows you to replace the default debugger back-end by the Intel® Debugger, depending on 

the used Eclipse* IDE version. E.g. via menu Window->Preferences: 

 

Or by creating a new debug configuration via menu Run->Debug Configurations…:

 

The debugger back-end can only be changed if the “Standard Create Process Launcher” or 

“Standard Attach to Process Launcher” is selected. 

6.2.2 Intel® Xeon Phi™ Coprocessor Debugger 

Debugging applications for the Intel® Xeon Phi™ coprocessor is different to debugging local 

applications because of the difference of host and target. The host is running the Intel® 

Debugger. This system can be the host containing the coprocessor cards or any other 

development host. The target, here the coprocessor itself, executes a debug agent 

(idbserver_mic) to which the host connects to. 

Before proceeding, source the idbvars.[sh|csh] script in the same environment as you are 

using the debugger. 
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There are two options to start a debug session on the host: 

1. Command line version of the debugger: 

Start Intel® Debugger and connect to the coprocessor, e.g.: 

$ idbc_mic 

 

To load and execute an application on the coprocessor issue the following commands: 

(idb) idb file-remote <path_on_target>/application 

(idb) file <path_on_host>/application 

 

To attach to a process already running on the coprocessor with PID <pid> issue the 

following commands: 

(idb) attach <pid> <path_on_host>/application 

 

2. Eclipse* IDE: 

To use the IDB back-end for debugging Intel® Xeon Phi™ applications a plugin needs to 

be installed. It can be found under <install-dir>/eclipse_support/cdt8.0/: 

 
Install the package “Intel® Debugger for applications that run on Intel® 64 and Intel® 

MIC Architecture”. 

Ensure that “Group items by category” is not checked. There might be a warning 

regarding unsigned content. This can be ignored. 

After installation and restart, create a new debug configuration for “C/C++ Application” or 

“C/C++ Application, click on “Select other…” and select “MPM (DSF) Create Process 
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Launcher”: 

 

In case of attaching to an Intel® Xeon Phi™ application the card needs to be selected 

under the “Debugger” tab under “MIC options”. 

6.3 Setting up the Java* Runtime Environment 

The stand-alone GUI of the Intel® IDB Debugger (idb) requires a Java Runtime Environment 

(JRE) to execute. The debugger will run with a 6.0 (also called 1.6) JRE. Install the JRE 

according to the JRE provider's instructions. Finally, ensure that java can be found via $PATH. 

Note: 

Make sure that the JRE is for the same architecture as you sourced the idbvars.[sh|csh] 

script. IDB won’t start if the architectures do not match (e.g. IDB for 32 bit won’t start with a JRE 

for 64 bit). 

 

6.4 Documentation 
Documentation for the Intel® Debugger can be found here: 

<install-dir>/Documentation/[en_US|ja_JP]/debugger/ 

Online help titled Intel® Compilers / Intel® Debugger Online Help is accessible from the 

debugger graphical user interface as Help > Help Contents.  

Context-sensitive help is also available in several debugger dialogs where a Help button is 

displayed. 
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6.5 Debugger Features 

6.5.1 Main Features of IDB 

The stand-alone GUI version of the debugger supports all features of the command line version. 

Debugger functions can be called from within the debugger GUI or the GUI-command line. 

Please refer to the Known Limitations when using the graphical environment. 

6.5.2 Inspector XE 2011 Update 6 Supports “break into debug” with IDB 

Inspector XE 2011 Update 6 now supports “break into debug” mode with the Composer XE 

2011 Update 6 and later versions of IDB.  Refer to the Inspector XE 2011 Release Notes for 

more information. 

6.6 Known Issues and Changes 

6.6.1 Using the Intel® Debugger with Intel® MPSS 

When using the Intel® Debugger for Intel® Many Integrated Core Architecture the following 

limitations apply: 

 

 When debugging native coprocessor applications on the command line, the remote 

debug agent idbserver_mic is uploaded and started using scp/ssh. This implies that 

the user id used to start idbc_mic must also exist on the coprocessor.  Unless 

passwordless authentication has been configured for this user id, scp and ssh will 

require a password being typed. 

 When debugging heterogeneous applications on the command line, the offload process 

is started as root. Using idbc_mic with a different user id than root will cause the 

offload process to not be visible by the remote debug server idbserver_mic. The 

workaround is to launch the command line debugger idbc_mic as root. Alternatively 

the options -mpm-launch=1 -mpm-cardid=<card-id> can be added to the default 

launch options:  idbc_mic -mpm-launch=1 -mpm-cardid=<card-id>  -tco -

rconnect=tcpip:<cardip>:<port> 

6.6.2 IDB might fail to setup command line argument for debuggee under Eclipse* IDE 

The debugger might not set the command line argument for the debuggee correctly under 

Eclipse* IDE when loading an application using the `file’ command in GDB mode. The 

debuggee may abort with the message: 

*** abort -internal failure : get_command_argument failed 

In this case, add the executable to the command line argument of IDB. 

6.6.2.1 Eclipse* IDE fails to display local variables 

Local variables cannot be seen under the Eclipse* IDE environment while debugging an 

application. 

 

Workaround: 
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Enter the local variable into the “Expressions” window to get its value. 

6.6.3 Thread Data Sharing Filters may not work correctly 

Setting Thread Data Sharing Filters may lead to unexpected behavior of the debugger. It may 

happen that threads will not continue after a data sharing detection and the debugger may exit 

with a SIG SEGV.  

If you encounter issues related to Data Sharing Detection with filters enabled, disable all filters 

in the ‘Thread Data Sharing Filters’ window context menu. 

6.6.4 Core File Debugging 

To be able to debug core files you need to start the debugger (command line debugger idbc or 

GUI debugger idb) with command-line options as follows: 

idb|idbc <executable> <corefile> 

<or> 

idb|idbc <executable> –core <corefile> 

Once started with a core file, the debugger is not able to debug a live process e.g. attaching or 

creating a new process. Also, when debugging a live process a core file cannot be debugged. 

6.6.5 Debugger crash if $HOME not set on calling shell 

The debugger will end with a “Segmentation fault” if no $HOME environment variable is set on 

the shell the debugger is started from.  

6.6.6 Command line parameter –idb and -dbx not supported 

The debugger command line parameters –idb and -dbx are not supported in conjunction with 

the debugger GUI. 

6.6.7 Watchpoints limitations 

For IA-32 and Intel® 64 architecture systems there are the following limitations (if possible IDB 

will raise appropriate error messages to assist the user): 

 Possible sizes of the watched memory areas are only 1, 2, 4 or 8 (Intel® 64 architecture 

only) bytes. 

 The start address of the watched memory area has to be aligned with its size.  For 

example it is not possible to watch 2 bytes starting with an odd address. 

 There is only support for a maximum of 4 active/enabled watchpoints. Unused ones can 

be disabled to free resources and to enable/create other ones. 

 Only the following access modes are supported: 

o Write: trigger on write accesses 

o Any: trigger on either write or read accesses 

o Changed: trigger on write accesses that actually changed the value 

 Watched memory areas must not overlap each other. 
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 Watchpoints are not scope related but tied to a process. As long as a process exists the 

watchpoints are active/enabled. Only if the process is terminated (e.g. rerun) will the 

watchpoints will be disabled. They can be enabled again if the user wishes to do so. 

 Using the debugger to access the watched memory area (e.g. assign a different value to 

a variable) bypasses the hardware detection. Hence watchpoints only trigger if the 

debuggee itself accessed the watched memory area. 

 If the debuggee is running on a guest OS inside a virtual machine, stepping over an 

instruction or code line might continue the process without stopping. Watchpoints are 

only guaranteed to work when the debuggee runs on real hardware. 

6.6.8 Position Independent Executable (PIE) Debugging not Supported 

On some systems the compiler is tuned to produce Position Independent Executable (PIE) 

code. In those cases the flag –fno-pie has to be used both for compilation and linking, otherwise 

the application cannot be debugged. 

6.6.9 Command line parameter –parallel not supported 

The debugger command line parameter –parallel is not supported on the shell command prompt 

or on the Console Window of the Debugger GUI.  

6.6.10 Signals Dialog Not Working 

The Signals dialog accessible via the GUI dialog Debug / Signal Handling or the shortcut Ctrl+S 

is not working correctly. Please refer to the Intel® Debugger (IDB) Manual for use of the signals 

command line commands instead. 

6.6.11 Resizing GUI 

If the debugger GUI window is reduced in size, some windows may fully disappear. Enlarge the 

window and the hidden windows will appear again. 

6.6.12 $cdir, $cwd Directories 

$cdir is the compilation directory (if recorded). This is supported in that the directory is set; but 

$cdir is not itself supported as a symbol. 

$cwd is the current working directory. Neither the semantics nor the symbol is supported. 

The difference between $cwd and '.' is that $cwd tracks the current working directory as it 

changes during a debug session. '.' is immediately expanded to the current directory at the time 

an entry to the source path is added. 

6.6.13 info stack Usage 

The GDB mode debugger command info stack does not currently support negative frame 

counts the way GDB does, for the following command:  

  info stack [num] 

A positive value of num prints the innermost num frames, a zero value prints all frames and a 

negative one prints the innermost –num frames in reverse order. 
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6.6.14 $stepg0 Default Value Changed 

The debugger variable $stepg0 changed default to a value of 0. With the value "0" the 

debugger will step over code without debug information if you do a "step" command.  Set the 

debugger variable to 1 to be compatible with previous debugger versions as follows: 

(idb) set $stepg0 = 1 

6.6.15 SIGTRAP error on some Linux* Systems 

On some Linux distributions (e.g. Red Hat Enterprise Linux Server release 5.1 (Tikanga)) a 

SIGTRAP error may occur when the debugger stops at a breakpoint and you continue 

debugging. As a workaround you may define the SIGTRAP signal as follows on command line: 

(idb) handle SIGTRAP nopass noprint nostop 

SIGTRAP is used by the debugger. 

SIGTRAP       No        No      No              Trace/breakpoint trap 

(idb)   

Caveat: With this workaround all SIGTRAP signals to the debuggee are blocked. 

6.6.16 idb GUI cannot be used to debug MPI processes 

The idb GUI cannot be used to debug MPI processes.  The command line interface (idbc) can 

be used for this purpose. 

6.6.17 Thread Syncpoint Creation in GUI 

While for plain code and data breakpoints the field “Location” is mandatory, thread syncpoints 

require both “Location” and “Thread Filter” to be specified. The latter specifies the threads to 

synchronize. Please note that for the other breakpoint types this field restricts the breakpoints 

created to the threads listed. 

6.6.18 Data Breakpoint Dialog 

The fields “Within Function” and “Length” are not used. The location to watch provides the 

watched length implicitly (the type of the effective expression is used). Also “Read” access is not 

working. 

6.6.19 Stack Alignment for IA-32 Architecture 

Due to changes in the default stack alignment for the IA-32 architecture, the usage of inferior 

calls (i.e. evaluation of expressions that cause execution of debuggee code) might fail. This can 

cause as well crashes of the debuggee and therefore a restart of the debug session. If you need 

to use this feature, make sure to compile your code with 4 byte stack alignment by proper usage 

of the –falign-stack=<mode> option. 

6.6.20 GNOME Environment Issues 

With GNOME 2.28, debugger menu icons may not being displayed by default. To get the menu 
icons back, you need to go to the “System->Preferences->Appearance, Interface” tab and 
enable, "Show icons in menus". If there is not “Interface” tab available, you can change this with 

the corresponding GConf keys in console as follows: 
    gconftool-2 --type boolean --set 

/desktop/gnome/interface/buttons_have_icons true 
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    gconftool-2 --type boolean --set 

/desktop/gnome/interface/menus_have_icons true 

6.6.21 Accessing Online-Help 

On systems where the Online-Help is not accessible from the IDB Debugger GUI Help menu, 
you can access the web-based debugger documentation from 
http://intel.ly/o5DMp9 

7 Eclipse Integration 
The Intel C++ Compiler installs an Eclipse feature and associated plugins (the Intel C++ Eclipse 

Product Extension) which provide support for the Intel C++ compiler when added as an Eclipse 

product extension site to an existing instance of the Eclipse* Integrated Development 

Environment (IDE). With this feature, you will be able to use the Intel C++ compiler from within 

the Eclipse integrated development environment to develop your applications. 

7.1 Supplied Integrations 
The Intel feature provided in the following directory:  

<install-dir>/eclipse_support/cdt8.0/eclipse  

supports and requires Eclipse Platform versions 4.2, 3.8, and 3.7; Eclipse C/C++ Development 

Tools (CDT) version 8.0 or later; and a functional Java Runtime Environment (JRE) version 6.0 

(also called 1.6) update 11 or later. 

7.1.1 Integration notes 

If you already have the proper versions of Eclipse, CDT and a functional JRE installed and 

configured in your environment, then you can add the Intel C++ Eclipse Product Extension to 

your Eclipse Platform, as described in the section, below, entitled How to Install the Intel C++ 

Eclipse Product Extension in Your Eclipse Platform.  Otherwise, you will first need to obtain and 

install Eclipse, CDT and a JRE, as described in the section, below, entitled How to Obtain and 

Install Eclipse, CDT and a JRE and then install the Intel C++ Eclipse Product Extension. 

If your installation of Eclipse already has an earlier Intel® C++ Composer XE integration 

installed, installing the updated integration will not work. You will need to install a fresh version 

of Eclipse into which you can install the latest Composer XE integration. For this same reason, 

using the Eclipse update mechanism to install a newer Composer XE integration will not work. 

7.2 How to Install the Intel C++ Eclipse Product Extension in Your Eclipse 

Platform 
To add the Intel C++ product extension to your existing Eclipse configuration, follow these 

steps, from within Eclipse. 

Open the "Available Software" page by selecting: Help > Install New Software... 

Click on the "Add..." button. Select "Local...". A directory browser will open. Browse to select the 

eclipse directory in your Intel C++ compiler installation. For example, if you installed the 

compiler as root to the default directory, you would browse to 



Intel® C++ Composer XE 2013 SP1 for Linux* 
Installation Guide and Release Notes  44 

/opt/intel/composer_xe_2013.<n>.<xxx>/eclipse_support/cdt8.0/eclipse. 

Select “OK” to close the directory browser. Then select "OK" to close the “Add Site” dialog. 

Select the two boxes for the Intel C++ integration: there will be one box for “Intel® C++ Compiler 

Documentation” and a second box for “Intel® C++ Compiler XE 14.0 for Linux* OS”. Note: The 

Intel features will not be visible if you have Group items by category set – unset this option to 

view the Intel features.  

Click the “Next” button. An “Install” dialog will open which gives you a chance to review and 

confirm you want to install the checked items. Click “Next”. You will now be asked to accept the 

license agreement. Accept the license agreement and click “Finish”. Select “OK” on the 

“Security Warning” dialog that says you are installing software that contains unsigned content. 

The installation of the Intel support will proceed.  

When asked to restart Eclipse, select “Yes”. When Eclipse restarts, you will be able to create 

and work with CDT projects that use the Intel C++ compiler. See the Intel C++ Compiler 

documentation for more information. You can find the Intel C++ documentation under Help > 

Help Contents > Intel(R) C++ Compiler XE 14.0 User and Reference 

Guides.  

7.2.1 Integrating the GNU* Project Debugger into Eclipse 

See the section GNU* GDB Debugger. 

7.2.2 Integrating the Intel® Debugger into Eclipse 

See the section Intel® Debugger (IDB). 

7.3 How to Obtain and Install Eclipse, CDT and a JRE 
Eclipse is a Java application and therefore requires a Java Runtime Environment (JRE) to 

execute. The choice of a JRE is dependent on your operating environment (machine 

architecture, operating system, etc.) and there are many JRE's available to choose from. 

A package containing both Eclipse 4.2 and CDT 8.1 is available from: 

http://www.eclipse.org/downloads/  

Scroll down to find “Eclipse IDE for C/C++ Developers”. Choose either the Linux 32-bit or Linux 

64-bit download as desired. 

7.3.1 Installing JRE, Eclipse and CDT 

Once you have downloaded the appropriate files for Eclipse, CDT, and a JRE, you can install 

them as follows: 

1. Install your chosen JRE according to the JRE provider's instructions. 

2. Create a directory where you would like to install Eclipse and cd to this directory. This 

directory will be referred to as <eclipse-install-dir> 

3. Copy the Eclipse package binary .tgz file to the <eclipse-install-dir> directory. 

4. Expand the .tgz file.  

5. Start eclipse 
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You are now ready to add the Intel C++ product extension to your Eclipse configuration as 

described in the section, How to Install the Intel C++ Eclipse Product Extension in Your Eclipse 

Platform. If you need help with launching Eclipse for the first time, please read the next section. 

7.4  Launching Eclipse for Development with the Intel C++ Compiler 

If you have not already set your LANG environment variable, you will need to do so. For 

example, 

setenv LANG en_US 

Setup Intel C++ compiler related environment variables by executing the compilervars.csh 

(or .sh) script prior to starting Eclipse: 

source <install-dir>/bin/compilervars.csh arch_arg (where "arch_arg" is one of 

"ia32" or "intel64"). 

Since Eclipse requires a JRE to execute, you must ensure that an appropriate JRE is available 

to Eclipse prior to its invocation. You can set the PATH environment variable to the full path of 

the folder of the java file from the JRE installed on your system or reference the full path of the 

java executable from the JRE installed on your system in the -vm parameter of the Eclipse 

command, e.g.: 

eclipse -vm /JRE folder/bin/java 

Invoke the Eclipse executable directly from the directory where it has been installed. For 

example: 

<eclipse-install-dir>/eclipse/eclipse 

7.5 Installing on Fedora* Systems 
If the Intel C++ Compiler for Linux is installed on an IA-32 or Intel® 64 architecture Fedora* 

system as a "local" installation, i.e. not installed as root, the installation may fail to properly 

execute the Eclipse graphical user interfaces to the compiler or debugger. The failure 

mechanism will typically be displayed as a JVM Terminated error. The error condition can 

also occur if the software is installed from the root account at the system level, but executed by 

less privileged user accounts. 

The cause for this failure is that a more granular level of security has been implemented on 

Fedora, but this new security capability can adversely affect access to system resources, such 

as dynamic libraries. This new SELinux security capability may require adjustment by your 

system administrator in order for the compiler installation to work for regular users. 

7.6 Selecting Compiler Versions 
For Eclipse projects you can select among the installed versions of the Intel C++ Compiler.  On 

IA-32 architecture systems, the supported Intel compiler versions are 9.1, 10.0, 10.1, 11.0, 11.1, 

12.0, 12.1, 13.0, and 14.0.  On Intel® 64 architecture systems, only compiler versions 11.0, 

11.1, 12.0, 12.1, 13.0, and 14.0 are supported. 
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8 Intel® Integrated Performance Primitives 
This section summarizes changes, new features and late-breaking news about this version of 

Intel® Integrated Performance Primitives (Intel® IPP).  

The latest information on Intel® IPP 8.0 can be found in the product release notes under 

<install 

dir>/composer_xe_2013_sp1.x.xxx/Documentation/<locale>/ipp/ReleaseNote

s.htm. 

For detailed information about IPP see the following links: 

 New features: see the information below and visit the main Intel IPP product page on 

the Intel web site at: http://intel.ly/OG5IF7; and the Intel IPP Release Notes at 

http://intel.ly/OmWI4d. 

 Documentation, help, and samples: see the documentation links on the IPP product 

page at: http://intel.ly/OG5IF7. 

8.1 Intel® IPP Cryptography Libraries are Available as a Separate 

Download  
The Intel® IPP cryptography libraries are available as a separate download. For download and 

installation instructions, please read http://intel.ly/ndrGnR  

8.2 Intel® IPP Code Samples 
The Intel® IPP code samples are organized into downloadable packages at  

http://intel.ly/pnsHxc  

The samples include source code for audio/video codecs, image processing and media player 

applications, and for calling functions from C++, C# and Java*. Instructions on how to build the 

sample are described in a readme file that comes with the installation package for each sample. 

9 Intel® Math Kernel Library 
This section summarizes changes, new features and late-breaking news about this version of 

the Intel® Math Kernel Library (Intel MKL). All the bug fixes can be found here: 

http://intel.ly/OeHQqf 

9.1 Notices 
Please refer to the Knowledge Base article on Deprecations for more information on the 

following notices  

 Intel® MKL now provides a choice of components to install. Components necessary for 

PGI* compiler, Compaq Visual Fortran* Compiler, SP2DP interface, BLAS95 and 

LAPACK95 interfaces, Cluster support (ScaLAPACK and Cluster DFT) and Intel® Many 

Integrated Core Architecture (Intel® MIC Architecture) support are not installed unless 

explicitly selected during installation  

http://software.intel.com/en-us/articles/intel-mkl-whats-deprecated/
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 Unaligned Conditional Numerical Reproducibility (CNR) is not available for Intel MKL 

Cluster components (ScaLAPACK and Cluster DFT)  

 Examples for using Intel MKL with Boost* uBLAS and Java* have been removed from 

product distribution and placed in the following articles:  

o How to use Intel MKL with Java*  

o How to use Boost* uBLAS with Intel MKL  

9.2 Changes in This Version 

9.2.1 What’s New in Intel MKL 11.1 update 2 

 Introduced support for Intel® Atom™ processors 

 BLAS: 

o Improved performance of ?GEMM for m==1 or n==1 on all Intel architectures 

o Improved MP LINPACK performance for systems using Intel® Many Integrated 

Core Architecture (Intel® MIC Architecture) 

o Improved performance of ?GEMM for outer product [large M, large N, small K] 

and tall skinny matrices [large M, medium N, small K] on Intel MIC Architecture 

o Improved performance of ?SYMM on Intel MIC Architecture 

o Improved {S/D}GEMM single thread performance on small matrices for 64-bit 

processors supporting Intel® Advanced Vector Extensions (Intel® AVX) and 

Intel® Advanced Vector Extensions 2 (Intel® AVX2) 

o Improved DGEMV performance for 64-bit processors supporting Intel AVX2 

o Improved threaded performance of {S,D,C,Z}GEMV for notrans:n>>m and 

trans:m>>n on all Intel architectures 

o Improved DSYR2K performance for 64-bit processors supporting Intel AVX and 

Intel AVX2 

o Improved DTRMM performance on small matrices (A matrix size <= 10) for 64-bit 

processors supporting Intel AVX and Intel AVX2 

o Reduced stack usage for ZHEMM and ZSYRK 

o Added more detailed error messages for running Offload MP LINPACK scripts 

with unsupported configurations 

 LAPACK: 

o Improved performance of (S/D)SYRDB and (D/S)SYEV for large dimensions and 

UPLO=L when eigenvectors are needed 

o Improved performance of ?GELQF,?GELS and ?GELSS for underdetermined 

case (M 

o Improved performance of ?GEHRD,?GEEV and ?GEES 

o Added Automatic Offload to Intel® Xeon Phi™ coprocessor for DSYRDB 

UPLO=L 

 Sparse BLAS: 

o Optimized SpMV kernels for Intel® Advanced Vector Extensions 512 (Intel® 

AVX-512) instruction set 

http://software.intel.com/en-us/articles/performance-tools-for-software-developers-how-do-i-use-intel-mkl-with-java
http://software.intel.com/en-us/articles/how-to-use-boost-ublas-with-intel-mkl
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o Improved Sparse BLAS level 2 and 3 performance for systems supporting Intel® 

Streaming SIMD Extensions 4.2 (Intel® SSE4.2), Intel AVX, and Intel AVX2 

instruction sets 

 PARDISO: 

o Improved memory estimation of out-of-core portion size for reordering algorithm 

leading to improved factorization-solving step performance in OOC mode 

 VML: 

o Added v[d|s]Frac function computing fractional part for each vector element 

 VSL RNG: 

o Improved performance of MRG32K3A, and MT2203 BRNGs on Intel Xeon Phi 

coprocessors 

o Improved performance of MT2203 BRNG on CPUs supporting Intel AVX and 

Intel AVX2 instruction sets 

 VSL Summary Statistics: 

o Added support for computation of group/pooled 

(VSL_SS_GROUP_MEAN/VSL_SS_POOLED_MEAN) mean estimates 

9.2.2 What's New in Intel MKL 11.1 update 1 

 Introduced support for Intel® AVX-512 instructions set with limited set of optimizations  
 BLAS:  

o Improved performance of DSDOT, and added support for multiple threads, on all 
64-bit Intel processors supporting Intel® Advanced Vector Extensions (Intel® 
AVX) and Intel® Advanced Vector Extensions 2 (Intel® AVX2)  

o Improved handling of denormals on the diagonal in *TRSM  
o Improved SGEMM performance for small N and large M and K on Intel® Many 

Integrated Core Architecture (Intel® MIC Architecture)  
o Improved parallel performance of *HEMM on all Intel processors supporting 

Intel® SSE4.2 and later  
o Improved parallel performance of 64-bit *SYRK/*HERK on all Intel processors 

supporting Intel® SSSE3 and later  
o Improved serial performance of 64-bit {D,S}SYRK on all Intel processors 

supporting Intel® SSE4.2 and later  
o Improved performance of DTRSM on Intel® MIC Architecture  
o Enhanced Intel® Optimized HPL Benchmark runmultiscript capabilities for Intel 

processors supporting Intel® AVX  
o Improved Intel® Optimized HPL Benchmark performance on Intel® MIC 

Architecture  
 LAPACK  

o Decreased memory utilization for parallel LAPACK functions 
(OR/UN)M(QR/RQ/QL/LQ)  

o Decreased stack memory utilization in LAPACK functions  
o Improved performance of (S/D)SYRDB and (S/D)SYEV for large dimensions 

when eigenvalues are only needed  
 ScaLAPACK  

o Updated PBLAS headers to mix default NETLIB and MKL complex datatypes  
 DFT: Optimized complex-to-complex and real-to-complex transforms  
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 Transposition: Improved performance of mkl_?omatcopy routines on tall and skinny 
matrices  

 DFTI interface and FFTW wrappers are now thread safe. setting 
NUMBER_OF_USER_THREADS parameter when using MKL DFT from parallel regions 
became optional. 

9.2.3 What's New in Intel MKL 11.1 

 Conditional Numerical Reproducibility : Introduced support for Conditional Numerical 

Reproducibility (CNR) mode on unaligned data  

 Introduced MP LINPACK support for heterogeneous clusters - clusters whose nodes 

differ from each other, either by processor type or by having varying number of attached 

Intel® Xeon Phi™ coprocessors  

 Improved performance of CNR=AUTO mode on recent AMD* systems  

 BLAS:  

o Improved performance of [S/D]GEMV on all Intel processors supporting Intel® 

SSE4.2 and later  

o Optimized [D/Z]GEMM and double-precision Level 3 BLAS functions on Intel® 

Advanced Vector Extensions 2 (Intel® AVX2)  

o Optimized [Z/C]AXPY and [Z/C]DOT[U/C] on Intel® Advanced Vector Extensions 

(Intel® AVX) and Intel AVX2  

o Optimized sequential version of DTRMM on Intel MIC Architecture  

o Tuned DAXPY on Intel AVX2  

 LAPACK:  

o Improved performance of (S/D)SYRDB and (S/D)SYEV for large dimensions 

when only eigenvalues are needed 

o Improved performance of xGESVD for small sizes like M,N<10  

 VSL:  

o Added support and examples for mean absolute deviation  

o Improved performance of Weibull Random Number Generator (RNG) for alpha=1  

o Added support of raw and central statistical sums up to the 4th order, matrix of 

cross-products and median absolute deviation  

o Added a VSL example designed by S. Joe and F. Y. Kuo illustrating usage of 

Sobol QRNG with direction numbers which supports dimensions up to 21,201  

o Improved performance of SFMT19937 Basic Random Number Generator 

(BRNG) on Intel MIC Architecture  

 DFT:  

o Improved performance of double precision complex-to-complex transforms on 

Intel MIC Architecture  

o Optimized complex-to-complex DFT on Intel AVX2  

o Optimized complex-to-complex 2D DFT on Intel® Xeon processor E5 v2 series  

o Improved performance for workloads specific to GENE application on Intel Xeon 

E5-series (Intel AVX) and on Intel AVX2  

o Improved documentation data layout for DFTI compute functions  

o Introduced scaling in large real-to-complex FFTs  
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 Data Fitting:  

o Improved performance of df?Interpolate1D and df?SearchCells1D functions on 

Intel Xeon processors and Intel MIC Architecture  

o Improved performance of df?construct1d function for linear and 

Hermite/Bessel/Akima cubic types of splines on Intel MIC Architecture, Intel® 

Xeon® processor X5570 and Intel® Xeon® processor E5-2690  

 Transposition  

o Improved performance of in-place transposition for square matrices  

 Examples and tests for using Intel MKL are now packaged as an archive to shorten the 

installation time  

9.3 Attributions  
As referenced in the End User License Agreement, attribution requires, at a minimum, 

prominently displaying the full Intel product name (e.g. "Intel® Math Kernel Library") and 

providing a link/URL to the Intel® MKL homepage (http://www.intel.com/software/products/mkl) 

in both the product documentation and website.  

The original versions of the BLAS from which that part of Intel® MKL was derived can be 

obtained from http://www.netlib.org/blas/index.html.  

The original versions of LAPACK from which that part of Intel® MKL was derived can be 

obtained from http://www.netlib.org/lapack/index.html. The authors of LAPACK are E. Anderson, 

Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. 

Hammarling, A. McKenney, and D. Sorensen. Our FORTRAN 90/95 interfaces to LAPACK are 

similar to those in the LAPACK95 package at http://www.netlib.org/lapack95/index.html. All 

interfaces are provided for pure procedures.  

The original versions of ScaLAPACK from which that part of Intel® MKL was derived can be 

obtained from http://www.netlib.org/scalapack/index.html. The authors of ScaLAPACK are L. S. 

Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, 

G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.  

The Intel® MKL Extended Eigensolver functionality is based on the Feast Eigenvalue Solver 2.0 

http://www.ecs.umass.edu/~polizzi/feast/  

PARDISO in Intel® MKL is compliant with the 3.2 release of PARDISO that is freely distributed 

by the University of Basel. It can be obtained at http://www.pardiso-project.org.  

Some FFT functions in this release of Intel® MKL have been generated by the SPIRAL software 

generation system (http://www.spiral.net/) under license from Carnegie Mellon University. The 

Authors of SPIRAL are Markus Puschel, Jose Moura, Jeremy Johnson, David Padua, Manuela 

Veloso, Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang 

Chen, Robert W. Johnson, and Nick Rizzolo. 
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10 Intel® Threading Building Blocks 
For information on changes to Intel® Threading Building Blocks, please read the file CHANGES 

in the TBB documentation directory. 

11 Disclaimer and Legal Information 
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R) 

PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO 

ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS 

PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL 

ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR 

IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS 

INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR 

PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR 

OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING 

BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY 

APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A 

SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. 

Intel may make changes to specifications and product descriptions at any time, without notice. 

Designers must not rely on the absence or characteristics of any features or instructions marked 

"reserved" or "undefined." Intel reserves these for future definition and shall have no 

responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. 

The information here is subject to change without notice. Do not finalize a design with this 

information. 

The products described in this document may contain design defects or errors known as errata 

which may cause the product to deviate from published specifications. Current characterized 

errata are available on request. 

Contact your local Intel sales office or your distributor to obtain the latest specifications and 

before placing your product order. 

Copies of documents which have an order number and are referenced in this document, or 

other Intel literature, may be obtained by calling 1-800-548-4725, or go to:  

http://www.intel.com/design/literature.htm  

Intel processor numbers are not a measure of performance. Processor numbers differentiate 

features within each processor family, not across different processor families. Go to:  

http://www.intel.com/products/processor%5Fnumber/ 

The Intel® C++ Compiler, Intel® Debugger, Intel® Integrated Performance Primitives, Intel® 

Math Kernel Library, and Intel® Threading Building Blocks are provided under Intel’s End User 

License Agreement (EULA).  

http://www.intel.com/products/processor_number/
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The GNU* Project Debugger, GDB is provided under the General GNU Public License GPL V3.  

Please consult the licenses included in the distribution for details. 

Celeron, Centrino, Intel, Intel logo, Intel386, Intel486, Atom, Core, Itanium, MMX, Pentium, 

VTune, Cilk, Xeon Phi, and Xeon are trademarks of Intel Corporation in the U.S. and other 

countries. 

* Other names and brands may be claimed as the property of others. 

Copyright © 2014 Intel Corporation. All Rights Reserved. 


