

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 1

Intel® C++ Composer XE 2013 SP1 for
Windows* Installation Guide and
Release Notes

Document number: 321414-005US

12 February 2015

Table of Contents
1 Introduction .. 4

1.1 Change History ... 5

1.1.1 Changes in Update 5 ... 5

1.1.2 Changes in Update 4 ... 5

1.1.3 Changes in Update 3 ... 5

1.1.4 Changes in Update 2 ... 5

1.1.5 Changes in Update 1 ... 5

1.1.6 Changes since Intel® C++ Composer XE 2013 .. 6

1.2 Product Contents .. 6

1.3 System Requirements .. 7

1.3.1 Visual Studio 2008* is Deprecated .. 8

1.3.2 Windows XP* is Deprecated ... 8

1.3.3 IA-64 Architecture (Intel® Itanium®) Development Not Supported 8

1.3.4 Windows Server 2003* and Windows Vista* Not Supported 8

1.3.5 Visual Studio 2005* Not Supported ... 9

1.4 Documentation ... 9

1.5 Samples .. 9

1.6 Japanese Language Support ... 9

1.7 Technical Support ... 9

2 Installation.. 10

2.1 Online Installation now available in Intel® Composer XE 2013 SP1 10

2.2 Installation of Intel® Manycore Platform Software Stack (Intel® MPSS) 10

2.3 Intel® Software Manager .. 10

2.4 Pre-installation Steps .. 10

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 2

2.4.1 Configure Visual Studio for 64-bit Applications ... 10

2.5 Installation .. 11

2.5.1 Changes to system PATH may cause temporary in-operation of command shell

(cmd.exe) ... 11

2.5.2 Silent Install ... 11

2.5.3 Cluster Installation ... 11

2.5.4 Using a License Server ... 12

2.6 Changing, Updating and Removing the Product .. 12

2.7 Installation Folders ... 12

3 Intel® C++ Compiler .. 16

3.1 Compatibility ... 16

3.2 New and Changed Features ... 16

3.2.1 New Intel® Cilk™ Plus STL vector reducer in Intel® C++ Composer XE 2013 SP1

update 2 17

3.2.2 New intrinsic _allow_cpu_features in Intel® C++ Composer XE 2013 SP1

update 1 18

3.2.3 The this pointer is now allowed in the Intel® Cilk™ Plus SIMD-enabled function

uniform clause (i.e. __declspec(vector(uniform(this)))) in Intel® C++ Composer

XE 2013 SP1 update 1 .. 18

3.2.4 New Numeric String Conversion Library libistrconv in Intel® C++ Composer

XE 2013 SP1 update 1 .. 18

3.2.5 Updated Support for Upcoming OpenMP* features added in Composer XE 2013

SP1 18

3.2.6 Intel® Cilk™ Plus changes in Intel® C++ Composer XE 2013 SP1 19

3.2.7 New attribute for pointers and pointer types to specify assumed data alignment in

Composer XE 2013 SP1 .. 19

3.2.8 New attribute to variable declarations to avoid false sharing in Composer XE 2013

SP1 19

3.2.9 New __INTEL_COMPILER_UPDATE predefined macro in Composer XE 2013

SP1 20

3.2.10 Static Analysis Feature (formerly “Static Security Analysis” or “Source Checker”)

Requires Intel® Inspector XE .. 20

3.2.11 Intel® C++ Project File Compatibility ... 20

3.3 New and Changed Compiler Options ... 20

3.3.1 New compiler option /Qcheck-pointers-mpx (-check-pointers-mpx) to

support the Intel® Memory Protection Extensions (Intel® MPX) (Update 1) 20

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 3

3.3.2 New compiler option /Q[a]xMIC-AVX512(-[a]xMIC-AVX512) for Intel® Advanced

Vector Extensions 512 (Intel® AVX-512) instructions support (Update 1) 20

3.3.3 /Qopt-gather-scatter-unroll(-opt-gather-scatter-unroll) for targeting Intel® MIC

Architecture (Update 1) .. 21

3.3.4 New and Changed in Composer XE 2013 SP1 ... 21

3.3.5 /Qopenmp-offload[-] and /Qopenmp-simd[-] added to Composer XE 2013 SP1 ... 21

3.3.6 /Wpch-messages[-] added to Composer XE 2013 SP1 .. 21

3.3.7 Deprecated Options .. 22

3.4 Other Changes ... 22

3.4.1 Pointer Checker requires a dynamic runtime library ... 22

3.4.2 KMP_DYNAMIC_MODE Environment Variable Support for “asat” Deprecated ... 22

3.4.3 Build Environment Command Script Change .. 22

3.4.4 OpenMP* Static Libraries Removed .. 23

3.4.5 Using Intel C++ Projects with a Source Control System 23

3.5 Known Issues ... 23

3.5.1 Compiler Known Issues ... 23

3.5.2 Visual Studio Known Issues .. 24

3.5.3 Showing Documentation Issue with Microsoft Visual Studio 2012* or 2013* and

Windows Server 2012* .. 24

3.5.4 Intel® Cilk™ Plus Known Issues ... 25

3.5.5 Guided Auto-Parallel Known Issues .. 25

3.5.6 Static Analysis Known Issues .. 25

4 Developing Applications for Intel® Many Integrated Core Architecture (Intel® MIC

Architecture) .. 26

4.1 About Intel® Composer XE 2013 SP1 for Windows* including Intel® MIC Architecture

 26

4.2 Getting Started ... 27

4.3 Product Documentation .. 27

4.4 Intel® Math Kernel Library (Intel® MKL) ... 27

4.5 Notes .. 27

4.6 Intel C++ Compiler .. 27

4.6.1 Limitations of _Cilk_shared in Composer XE 2013 SP1 27

4.6.2 Using offload code in shared libraries requires main program to be linked with

/Qoffload:mandatory or /Qoffload:optional option .. 27

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 4

4.6.3 Missing symbols not detected at link time ... 27

4.6.4 *MIC* tag added to compile-time diagnostics .. 28

4.6.5 Runtime Type Information (RTTI) not supported ... 28

4.6.6 Direct (native) mode requires transferring runtime libraries like libiomp5.so to

coprocessor ... 28

4.6.7 Calling exit() from an offload region .. 29

4.7 Intel® Debugger Extension for Intel® Many Integrated Core Architecture (Intel® MIC

Architecture) .. 29

4.7.1 Features .. 29

4.7.2 Using the Intel® Debugger Extension ... 29

4.7.3 Documentation .. 30

4.7.4 Known Issues and Limitations ... 30

5 Intel® Integrated Performance Primitives .. 31

5.1 Intel® IPP Cryptography Libraries are Available as a Separate Download 32

5.2 Intel® IPP Code Samples ... 32

6 Intel® Math Kernel Library ... 32

6.1 Notices .. 32

6.2 Changes in This Version .. 33

6.2.1 What’s New in Intel MKL 11.1 Update 4 .. 33

6.2.2 What's New in Intel MKL 11.1 Update 3 .. 33

6.2.3 What’s New in Intel MKL 11.1 update 2 .. 34

6.2.4 What's New in Intel MKL 11.1 update 1 .. 35

6.2.5 What's New in Intel MKL 11.1 ... 36

6.3 Attributions .. 37

7 Intel® Threading Building Blocks ... 38

7.1 Known Issues ... 38

7.1.1 Library Issues .. 38

8 Disclaimer and Legal Information .. 39

1 Introduction
This document describes how to install the product, provides a summary of new and changed

product features and includes notes about features and problems not described in the product

documentation.

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 5

Due to the nature of this comprehensive integrated software development tools solution,

different Intel® C++ Composer XE components may be covered by different licenses. Please

see the licenses included in the distribution as well as the Disclaimer and Legal Information

section of these release notes for details.

1.1 Change History
This section highlights important from the previous product version and changes in product

updates. For information on what is new in each component, please read the individual

component release notes.

1.1.1 Changes in Update 5

 Intel® C++ Compiler XE 14.0.5

 Corrections to reported problems

1.1.2 Changes in Update 4

 Intel® C++ Compiler XE 14.0.4

 Intel® Math Kernel Library 11.1 update 4

 Intel® Threading Building Blocks 4.2 update 5

 Corrections to reported problems

1.1.3 Changes in Update 3

 Intel® C++ Compiler XE 14.0.3

 Intel® Math Kernel Library 11.1 update 3

 Intel® Integrated Performance Primitives 8.1 update 1

 Intel® Threading Building Blocks 4.2 update 4

 Corrections to reported problems

1.1.4 Changes in Update 2

 Intel® C++ Compiler XE 14.0.2

 Intel® Math Kernel Library 11.1 update 2

 Intel® Integrated Performance Primitives 8.1

 Intel® Threading Building Blocks 4.2 update 3

 Microsoft Visual Studio 2013* supported

 New Intel® Cilk™ Plus STL vector reducer in Intel® C++ Composer XE 2013 SP1

update 2

 KMP_DYNAMIC_MODE Environment Variable Support for “asat” Deprecated

 Corrections to reported problems

1.1.5 Changes in Update 1

 Windows 8.1 supported

 Intel® C++ Compiler XE 14.0.1

 First 14.0 version with Japanese localization

 Intel® Math Kernel Library 11.1 update 1

 Intel® Integrated Performance Primitives 8.0 update 1

 Intel® Threading Building Blocks 4.2 update 1

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 6

 New Numeric String Conversion Library: libistrconv

 New compiler option /Qopt-gather-scatter-unroll (opt-gather-scatter-

unroll) for targeting Intel® MIC Architecture

 New compiler option /Q[a]xMIC-AVX512(-[a]xMIC-AVX512)

 New compiler option /Qcheck-pointers-mpx (-check-pointers-mpx) to support

the Intel® Memory Protection Extensions (Intel® MPX)

 “uniform(this)” is now allowed in Intel® Cilk™ Plus SIMD enabled function (e.g.,

__declspec(vector(uniform(this))))

 New intrinsic _allow_cpu_features

1.1.6 Changes since Intel® C++ Composer XE 2013

 Online installation

 Intel® C++ Compiler XE 14.0.0

 Support for Intel® Many Integrated Core Architecture (Intel® MIC Architecture)

 Features from C++11 (-std=c++11)

 Partial OpenMP* 4.0 support

 Intel® Cilk™ Plus changes

 __INTEL_COMPILER_UPDATE predefined macro

 Pointer type alignment qualifiers

 Variable definition attributes to avoid false sharing

 Using offload code in shared libraries requires main program to be linked with –

offload=mandatory or –offload=optional option

 Limitations of _Cilk_shared

 /Qopenmp-offload and /Qopenmp-simd options added for controlling the

enabling/disabling of specific OpenMP* 4.0 features independently of other OpenMP

features

 /QxATOM_SSE4.2 option added to support Silvermont microarchitecture

 Intel® Debugging Extension 1.0 for Intel® MIC Architecture

 Intel® Math Kernel Library updated to version 11.1

 Intel® Integrated Performance Primitives updated to version 8.0 update 1

 Intel® Threading Building Blocks updated to version 4.2

 Intel® Debugger Extension for Intel® Many Integrated Core Architecture (Intel® MIC

Architecture)

1.2 Product Contents
Intel® C++ Composer XE 2013 SP1 Update 5 for Windows* includes the following components:

 Intel® C++ Compiler XE 14.0.5 for building applications that run on IA-32 or Intel® 64

architecture systems or Intel® Xeon Phi™ coprocessors running the Windows* operating

system

 Intel® Debugger Extension for Intel® Many Integrated Core Architecture (Intel® MIC

Architecture)

 Intel® Integrated Performance Primitives 8.1 update 1

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 7

 Intel® Math Kernel Library 11.1 update 4

 Intel® Threading Building Blocks 4.2 update 5

 Integration into Microsoft* development environments

 Sample programs

 On-disk documentation

1.3 System Requirements
For an explanation of architecture names, see http://intel.ly/q9JVjE

 A PC based on an IA-32 or Intel® 64 architecture processor supporting the Intel®

Streaming SIMD Extensions 2 (Intel® SSE2) instructions (Intel® Pentium® 4 processor

or later), or compatible non-Intel processor

o For the best experience, a multi-core or multi-processor system is recommended

 1GB RAM (2GB recommended)

 4GB free disk space for all product features and all architectures

 For Intel® Many Integrated Core Architecture (Intel® MIC Architecture)

development/testing:

o Intel® Xeon Phi™ processor

o Intel® Manycore Platform Software Stack (Intel® MPSS)

o Debugging of offload code requires Microsoft Visual Studio* 2012 or 2013

 Microsoft Windows XP*, Microsoft Windows 7*, Microsoft Windows 8*, Microsoft

Windows 8.1*, Microsoft Windows Server 2008*, Microsoft Windows HPC Server 2008*,

or Microsoft Windows Server 2012* (embedded editions not supported)

o Microsoft Windows Server 2008 or Windows HPC Server 2008 requires Microsoft

Visual Studio 2010* or Visual Studio 2008* SP1.

o On Microsoft Windows 8, Microsoft Windows 8.1, and Microsoft Windows Server

2012, the product installs into the “Desktop” environment. Development of

“Windows 8 UI” applications is not supported. [4]

 To use the Microsoft Visual Studio development environment or command-line tools to

build IA-32 or Intel® 64 architecture applications, one of:

o Microsoft Visual Studio 2013* Professional Edition (or higher edition) with C++

component installed

o Microsoft Visual Studio 2012* Professional Edition (or higher edition) with C++

component installed

o Microsoft Visual Studio 2010* Professional Edition (or higher edition) with C++

and “X64 Compiler and Tools” components installed [1]

o Microsoft Visual Studio 2008* Standard Edition (or higher edition) with C++ and

“X64 Compiler and Tools” components installed [1]

 To use command-line tools only to build IA-32 architecture applications, one of:

o Microsoft Visual C++ Express 2013 for Windows Desktop*

o Microsoft Visual C++ Express 2012 for Windows Desktop*

o Microsoft Visual C++ 2010* Express Edition

o Microsoft Visual C++ 2008* Express Edition

 To use command-line tools only to build Intel® 64 architecture applications, one of:

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 8

o Microsoft Visual C++ Express 2013 for Windows Desktop*

o Microsoft Visual C++ Express 2012 for Windows Desktop*

o Microsoft Windows* Software Development Kit for Windows 8*

 To read the on-disk documentation, Adobe Reader* 7.0 or later

Notes:

1. Microsoft Visual Studio 2008 Standard Edition installs the “x64 Compiler and Tools”

component by default – the Professional and higher editions require a “Custom” install to

select this. Microsoft Visual Studio 2010 includes x64 support by default.

2. The default for the Intel® compilers is to build IA-32 architecture applications that require

a processor supporting the Intel® SSE2 instructions - for example, the Intel® Pentium®

4 processor. A compiler option is available to generate code that will run on any IA-32

architecture processor. However, if your application uses Intel® Integrated Performance

Primitives or Intel® Threading Building Blocks, executing the application will require a

processor supporting the Intel® SSE2 instructions.

3. Applications can be run on the same Windows versions as specified above for

development. Applications may also run on non-embedded 32-bit versions of Microsoft

Windows earlier than Windows XP, though Intel does not test these for compatibility.

Your application may depend on a Win32 API routine not present in older versions of

Windows. You are responsible for testing application compatibility. You may need to

copy certain run-time DLLs onto the target system to run your application.

4. Intel® C++ Composer XE does not support development of Windows 8* UI apps. We

are always interested in your comments and suggestions. For example, if you want to

use the Intel® C++ Compiler XE or other Intel software development capabilities in

Windows 8 UI apps, please file a request at Intel® Premier Support

(https://premier.intel.com/).

If you are interested in experimenting with unsupported Intel software development

capabilities for developing Windows 8 UI apps, please read Experimenting with Intel C++

Composer XE for Windows and Windows 8 Store Apps (http://intel.ly/WLeXRo).

1.3.1 Visual Studio 2008* is Deprecated

Support for Visual Studio 2008* has been deprecated and will be removed in a future release.

1.3.2 Windows XP* is Deprecated

Support for Windows XP* has been deprecated and will be removed in a future release.

1.3.3 IA-64 Architecture (Intel® Itanium®) Development Not Supported

This product version does not support development on or for IA-64 architecture (Intel®

Itanium®) systems. The version 11.1 compiler remains available for development of IA-64

architecture applications.

1.3.4 Windows Server 2003* and Windows Vista* Not Supported

Support has been removed for installation and use on Windows Server 2003 and Windows

Vista. Intel recommends migrating to a newer version of these operating systems.

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 9

1.3.5 Visual Studio 2005* Not Supported

Support has been removed for installation and use with Visual Studio 2005. Intel recommends

migrating to a newer version of Visual Studio*.

1.4 Documentation

Product documentation can be found in the Documentation folder as shown under Installation

Folders.

1.5 Samples

Samples for each product component can be found in the Samples folder as shown under

Installation Folders.

1.6 Japanese Language Support
Intel compilers provide support for Japanese language users. Error messages, visual

development environment dialogs and some documentation are provided in Japanese in

addition to English. By default, the language of error messages and dialogs matches that of

your operating system language selection. Japanese-language documentation can be found in

the ja_JP subdirectory for documentation and samples.

Japanese language support will be available in an update on or after the release of Intel® C++

Composer XE 2013 SP1.

If you wish to use Japanese-language support on an English-language operating system, or

English-language support on a Japanese-language operating system, you will find instructions

at http://intel.ly/oZjpZs

1.7 Technical Support
If you did not register your compiler during installation, please do so at the Intel® Software

Development Products Registration Center at http://registrationcenter.intel.com. Registration

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 10

entitles you to free technical support, product updates and upgrades for the duration of the

support term.

For information about how to find Technical Support, Product Updates, User Forums, FAQs, tips

and tricks, and other support information, please visit

http://www.intel.com/software/products/support/

Note: If your distributor provides technical support for this product, please contact them for

support rather than Intel.

2 Installation

2.1 Online Installation now available in Intel® Composer XE 2013 SP1
The default electronic installation package for Intel® Composer XE 2013 SP1 now consists of a

smaller installation package that dynamically downloads and then installs packages selected to

be installed. This requires a working internet connection and potentially a proxy setting if you

are behind an internet proxy. Full packages are provided alongside where you download this

online install package if a working internet connection is not available.

2.2 Installation of Intel® Manycore Platform Software Stack (Intel® MPSS)
The Intel® Manycore Platform Software Stack (Intel® MPSS) may be installed before or after

installing the Intel® Composer XE 2013 SP1 for Windows* including Intel® MIC Architecture

product.

Using the latest version of Intel® MPSS available is recommended.

Refer to the Intel® MPSS documentation for the necessary steps to install the user space and

kernel drivers.

2.3 Intel® Software Manager
The installation now provides an Intel® Software Manager to provide a simplified delivery

mechanism for product updates and provide current license status and news on all installed

Intel® software products.

You can also volunteer to provide Intel anonymous usage information about these products to

help guide future product design. This option, the Intel® Software Improvement Program, is not

enabled by default – you can opt-in during installation or at a later time, and may opt-out at any

time. For more information please see http://intel.ly/SoftwareImprovementProgram.

2.4 Pre-installation Steps

2.4.1 Configure Visual Studio for 64-bit Applications

If you are using Microsoft Visual Studio 2008* and will be developing 64-bit applications (for the

Intel® 64 architecture) you may need to change the configuration of Visual Studio to add 64-bit

support.

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 11

If you are using Visual Studio 2008* Standard Edition, or Visual Studio 2010* Professional

Edition or higher, no configuration is needed to build Intel® 64 architecture applications. For

other editions:

1. From Control Panel > Add or Remove Programs, select “Microsoft Visual Studio 2008” >

Change/Remove. The Visual Studio Maintenance Mode window will appear. Click Next.

2. Click Add or Remove Features

3. Under “Select features to install”, expand Language Tools > Visual C++

4. If the box “X64 Compiler and Tools” is not checked, check it, then click Update. If the

box is already checked, click Cancel.

Note that Visual C++ Express Edition does not support 64-bit development.

2.5 Installation
The installation of the product requires a valid license file or serial number. If you are evaluating

the product, you can also choose the “Evaluate this product (no serial number required)” option

during installation.

If you received your product on DVD, insert the first product DVD in your computer’s DVD drive;

the installation should start automatically. If it does not, open the top-level folder of the DVD

drive in Windows Explorer and double-click on setup.exe.

If you received your product as a downloadable file, double-click on the executable file (.EXE) to

begin installation. Note that there are several different downloadable files available, each

providing different combinations of components. Please read the download web page carefully

to determine which file is appropriate for you.

You do not need to uninstall previous versions or updates before installing a newer version –

the new version will coexist with the older versions

2.5.1 Changes to system PATH may cause temporary in-operation of command shell

(cmd.exe)

On Windows* 7 or 8, if the installation’s additions to the system PATH cause the PATH length to

consist of between 2000-4000 characters, this could cause the Windows command prompt

(cmd.exe) to not work until the next reboot. If you observe such behavior after installation,

reboot and if the symptom persists, contact Technical Support.

2.5.2 Silent Install

For information on automated or “silent” install capability, please see http://intel.ly/nKrzhv

2.5.3 Cluster Installation

If Microsoft Compute Cluster Pack* is present, and the installation detects that the installing

system is a member of a cluster, the product will be installed on all visible nodes of the cluster

when a “Full” installation is requested. If a “Custom” installation is requested, you will be given

the option to install on the current node only.

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 12

2.5.4 Using a License Server

If you have purchased a “floating” license, see http://intel.ly/pjGfwC for information on how to
install using a license file or license server. This article also provides a source for the Intel®
License Server that can be installed on any of a wide variety of systems.

2.6 Changing, Updating and Removing the Product
Use the Windows Control Panel “Add or Remove Products” applet to change which product

components are installed or to remove the product.

When installing an updated version of the product, you do not need to remove the older version

first. You can have multiple versions of the compiler installed and select among them. If you

remove a newer version of the product you may have to reinstall the integrations into Microsoft

Visual Studio from the older version.

2.7 Installation Folders
The installation folder arrangement is shown in the diagram below. Not all folders will be present

in a given installation.

 C:\Program Files\Intel\Composer XE 2013 SP1

o bin

 ia32

 ia32_gfx

 ia32_intel64

 intel64

 intel64_mic

 sourcechecker

o compiler

 include

 cilk

 ia32

 intel64

 mic

 lib

 ia32

 intel64

 mic

o locale

 en_US

 ja_JP

 perf_headers

 C++

o Debugger

 gdb

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 13

 LICENSES

 src

 target

o mic

 bin

 lib

 share

 man

o man1

 w64_mic

o bin

o include

 gdb

o lib

o share

 gdb

 python

o gdb

 command

 function

 syscalls

 info

 locale

 man

 man1

 debuggerextension

 mic

o scripts

o Documentation

 en_US

 compiler_c

o cl

 debugger

o gdb

 pdf

 gs_resources

 ipp

o get_started_files

o ipp_userguide

o tutorials

 mkl

o get_started_files

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 14

o mkl_userguide

o tutorials

 ssadiag_docs

 tbb

o get_started_files

o html

o tutorial

 tutorials

o cmp_gap_c

o cmp_thd_c

o cmp_vec_c

 msvhelp

 1033

o compiler_c

o ipp

o mkl

o ssadiag

o tbb

 vshelp

 intel.cppprodocs

 intel.cprocompilerdocs

 intel.ippdocs

 intel.mkldocs

 intel.sssadiag

 intel.tbbdocs

o Help

o ipp

 bin

 examples

 include

 interfaces

 lib

 tools

o mkl

 benchmarks

 bin

 examples

 include

 interfaces

 lib

 tests

 tools

o redist

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 15

 ia32

 compiler

o 1033

o irml

o irml_c

 ipp

o 1033

 mkl

o 1033

 tbb

o vc_mt

o vc9

o vc10

o vc11

 intel64

 compiler

o 1033

o irml

o irml_c

 ipp

o 1033

 mkl

o 1033

 tbb

o vc_mt

o vc9

o vc10

o vc11

o Samples

 en_US

 C++

 Ipp

 mkl

o tbb

 bin

 examples

 include

 serial

o tbb

 tbb

o compat

o internal

o machine

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 16

 lib

 ia32

o vc_mt

o vc9

o vc10

o vc11

 intel64

o vc_mt

o vc9

o vc10

o vc11

o VS Integration

 C++

 VS2008

Where the folders under bin, include and lib are used as follows:

 ia32: Files used to build applications that run on IA-32

 intel64: Files used to build applications that run on Intel® 64

 ia32_intel64: Compilers that run on IA-32 to build applications that run on Intel®64

If you are installing on a system with a non-English language version of Windows, the name of

the Program Files folder may be different. On Intel® 64 architecture systems, the folder

name is Program Files (X86) or the equivalent.

By default, updates of a given version will replace the existing directory contents. When the first

update is installed, the user is given the option of having the new update installed alongside the

previous installation, keeping both on the system. If this is done, the top-level folder name for

the older update is changed to Composer XE 2013.nnn where nnn is the update number.

3 Intel® C++ Compiler
This section summarizes changes, new features and late-breaking news about the Intel C++

Compiler.

3.1 Compatibility
In version 11, the IA-32 architecture default for code generation has changed to assume that

Intel® Streaming SIMD Extensions 2 (Intel® SSE2) instructions are supported by the processor

on which the application is run. See below for more information.

3.2 New and Changed Features
C++ Composer XE 2013 SP1 now contains Intel® C++ Compiler XE 14.0. The following

features are new or significantly enhanced in this version. For more information on these

features, please refer to the documentation.

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 17

 New Intel® Cilk™ Plus STL vector reducer in Intel® C++ Composer XE 2013 SP1

update 2

 New intrinsic _allow_cpu_features in Intel® C++ Composer XE 2013 SP1 update 1

 The this pointer is now allowed in the Intel® Cilk™ Plus SIMD-enabled function

uniform clause (i.e. __declspec(vector(uniform(this)))) in Intel® C++

Composer XE 2013 SP1 update 1

 New Numeric String Conversion Library libistrconv in Intel® C++ Composer XE 2013

SP1 update 1

 Support for Intel® Many Integrated Core Architecture (Intel® MIC Architecture)

 Features from C++11 (-std=c++11)

o Complete (instead of partial) implementation of initializer lists. See N2672 and

N3217.

o Complete implementation of inline namespaces. See N2535.

o Complete implementation of non-static data member initializers. See N2756.

o Complete implementation of generalized constant expressions. See N2235.

o Complete implementation of unrestricted unions. See N2544.

o Delegating constructors. See N1986.

o Rvalue references for *this. See N2439.

o Raw string literals. See N2442.

o Conversions of lambdas to function pointers.

o Implicit move constructors and assignment operators. See N3053.

o __bases and __direct_bases type traits.

o The context-sensitive keyword "final" can now be used on a class definition, and

"final" and "override" can be used on member function declarations. See N2928,

N3206, and N3272.

o Complete implementation of the "noexcept" specifier and operator. See N3050.

Includes the late instantiation of noexcept per core issue 1330.

o The version of header files and libraries that are provided as part of the Intel®

Manycore Platform Software Stack distribution on Intel® Many Integrated Core

Architecture is an experimental 4.7.0 version. This version lacks full support for

some gcc* features that are available in the final release of the 4.7.0 gcc

libraries. In particular, this version of gcc lacks the support for allocator traits.

 Partial OpenMP* 4.0 support

 Intel® Cilk™ Plus changes

 __INTEL_COMPILER_UPDATE predefined macro

 Pointer type alignment qualifiers

 Variable definition attributes to avoid false sharing

3.2.1 New Intel® Cilk™ Plus STL vector reducer in Intel® C++ Composer XE 2013 SP1

update 2

In update 2, a reducer_vector class is now provided. The header file

“cilk/reducer_vector.h” will need to be included. The reducer type is cilk::reducer<

cilk::op_vector<type> >. See the header file comments for further specifics.

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 18

3.2.2 New intrinsic _allow_cpu_features in Intel® C++ Composer XE 2013 SP1

update 1

This new intrinsic _allow_cpu_features([xxx][,xxx]) is added to immintrin.h. It tells

the compiler that the code region following it may be targeted for processors with the specified

feature(s) so some specific optimizations may be performances.

Note: support of this intrinsic is preliminary, not all of the compilers optimization phases can be

taken place in the code region.

Please reference Compiler documentation for detailed information with code sample, and the

article New intrinsic _allow_cpu_features support for additional information.

3.2.3 The this pointer is now allowed in the Intel® Cilk™ Plus SIMD-enabled function

uniform clause (i.e. __declspec(vector(uniform(this)))) in Intel® C++

Composer XE 2013 SP1 update 1

When a uniform class object calls a SIMD-enabled class member function, explicitly specifying

“uniform(this)” clause in the callee’s SIMD declaration may improve performance (how

much depends on how the “this” keyword is used inside the callee). The usage model is the

same as the uniform clause applied to formal parameters.

Please reference Compiler documentation for detailed information.

3.2.4 New Numeric String Conversion Library libistrconv in Intel® C++ Composer XE

2013 SP1 update 1

This New Numeric String Conversion Library, libistrconv, provides a collection of routines

for converting between ASCII strings and C data types, which are optimized for performance.

The new APIs are declared in the header file “istrconv.h”.

Please reference Compiler documentation for detailed information.

3.2.5 Updated Support for Upcoming OpenMP* features added in Composer XE 2013

SP1

Composer XE 2013 SP1 adds partial support for OpenMP* 4.0 features. The features supported

as defined in the OpenMP* 4.0 specifications available from http://openmp.org are:

 TEAMS pragmas, directives and clauses

 DISTRIBUTE pragmas, directive and clauses

 SIMD pragmas, directives, and clauses

 TARGET pragmas, directives and clauses for attached coprocessors (or devices)

 #pragma omp taskgroup construct

 Atomic clause seq_cst

 Six new forms of atomic capture and update:

o Atomic swap: {v = x; x = expr;}

o Atomic update: x = expr binop x;

o Atomic capture 1: v = x = x binop expr;

o Atomic capture 2: v =x = expr binop x;

http://software.intel.com/en-us/articles/new-intrinsic-allow-cpu-features-support

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 19

o Atomic capture 3: {x = expr binop x; v = x;}

o Atomic capture 4: {v = x; x = expr binop x;}

 proc_bind(<type>) clause where <type> is “spread”, “close”, or “master”

 OMP_PLACES environment variable

 OMP_PROC_BIND environment variable

 omp_get_proc_bind() API

For more information, see http://intel.ly/W7CHjb.

3.2.6 Intel® Cilk™ Plus changes in Intel® C++ Composer XE 2013 SP1

Please note the following new features for Intel® Cilk™ Plus in Intel C++ Composer XE 2013

SP1:

 SIMD enabled function implementation has changed to be more compatible with other

vector function implementations in gcc and OpenMP*. This breaks binary compatibility

with previous Intel® C++ Compiler versions (13.1 and earlier). You should either rebuild

all codes using SIMD enabled functions with the version 14.0 compiler, or use the

/Qvecabi:legacy compiler option to use the previous implementation.

 New multiply reducer defined in cilk/reducer_opmul.h

 Three new array notation reduction intrinsics have been added to support bitwise

reduction operations:

o __sec_reduce_and

o __sec_reduce_or

o __sec_reduce_xor

3.2.7 New attribute for pointers and pointer types to specify assumed data alignment in

Composer XE 2013 SP1

__declspec(align_value(N)) and __attribute__((align_value(N))) have been added to indicate to

the compiler it can assume the specified alignment “N” when using the attributed pointer type.

For example:

typedef float float_a16

__attribute__((align_value (16)));

void foo(float_a16 *restrict dest, float_a16 *restrict src){

Let’s the compiler know that the src and dest arguments should be aligned by the user on 16-

byte boundaries.

3.2.8 New attribute to variable declarations to avoid false sharing in Composer XE 2013

SP1

__declspec(avoid_false_share)/__attribute__((avoid_false_share)) and

__declspec(avoid_false_share(identifier))/__attribute__((avoid_false_share(identifier))) have

been added to indicate to the compiler that the variable attributed should be suitably padded or

aligned to avoid false sharing with any other variable. If an identifier is specified, then any

variables attributed with that identifier will be padded or aligned to avoid false sharing with any

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 20

other variables except those others with the same identifier. These attributes must be on

variable definitions in function, global, or namespace scope. If in function scope, the scope of

the identifier is the current function. If the variable definition is in global or namespace scope,

the scope of the identifier is in the current compilation unit.

3.2.9 New __INTEL_COMPILER_UPDATE predefined macro in Composer XE 2013 SP1

A new __INTEL_COMPILER_UPDATE predefined macro can now be used to obtain the minor

update number for the Intel® Compiler being used. For example, for a compiler version 14.0.2,

the macro would preprocess to “2”.

3.2.10 Static Analysis Feature (formerly “Static Security Analysis” or “Source Checker”)

Requires Intel® Inspector XE

The “Source Checker” feature, from compiler version 11.1, has been enhanced and renamed

“Static Analysis”. The compiler options to enable Static Analysis remain the same as in

compiler version 11.1 (for example, /Qdiag-enable:sc), but the results are now written to a

file that is interpreted by Intel® Inspector XE rather than being included in compiler diagnostics

output.

3.2.11 Intel® C++ Project File Compatibility

The Intel C++ project file (.icproj) format changed in version 14.0 (Composer XE 2013 SP1).

If you open a project created with an earlier version of Intel C++, you will get a message

indicating that the project needs to be converted. A version 14.0 project cannot be used by an

earlier version of the Intel C++ integration but you can use older versions of the compiler that

you have installed through Tools > Options > Intel C++ > Compilers.

3.3 New and Changed Compiler Options
For details on these and all compiler options, see the Compiler Options section of the on-disk

documentation.

3.3.1 New compiler option /Qcheck-pointers-mpx (-check-pointers-mpx) to

support the Intel® Memory Protection Extensions (Intel® MPX) (Update 1)

This option will cause the compiler to generate code which uses the Intel® Memory

Protection Extensions (Intel® MPX) for performance acceleration of Pointer Checker. If the

target platform does not support Intel® MPX, Pointer Checker features will operate as no-

ops. See the Introduction to Intel® Memory Protection Extensions for some details about

Intel® MPX.

Please see Compiler Options section of the documentation for detailed information about

this new option.

3.3.2 New compiler option /Q[a]xMIC-AVX512(-[a]xMIC-AVX512) for Intel® Advanced

Vector Extensions 512 (Intel® AVX-512) instructions support (Update 1)

This option may generate Intel(R) AVX-512 Foundation instructions, Intel(R) AVX-512

Conflict Detection instructions, Intel(R) AVX-512 Exponential and Reciprocal instructions,

Intel(R) AVX-512 Prefetch instructions for Intel(R) processors and the instructions enabled

http://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 21

with CORE-AVX2. It lets compiler to optimize for Intel(R) processors that support Intel(R)

AVX-512 instructions.

Please see Compiler Options section of the documentation for detailed information, and see

AVX-512 instructions article for more about the new instructions.

3.3.3 /Qopt-gather-scatter-unroll(-opt-gather-scatter-unroll) for targeting Intel® MIC

Architecture (Update 1)

This option lets you specify an alternative loop unroll sequence for gather and scatter loops

on Intel® MIC Architecture. It is only available on Intel® 64 architecture targeting Intel® MIC

Architecture.

Please see Compiler Options section of the documentation for detailed information.

3.3.4 New and Changed in Composer XE 2013 SP1

 /Qopenmp-offload[-]

 /Qopenmp-simd[-]

 /QxATOM_SSE4.2

 /QxATOM_SSSE3

 /Qvecabi:<arg>

 /Qpar

 /pdbfile[:filename]

 /nopdbfile

 /Wpch-messages[-]

 /Qmic

 /Qoffload[:keyword]

 /Qoffload-attribute-target:target-name

 /Qoffload-option, target, tool, “option-list”

 /Qopt-assume-safe-padding

 /Qopt-prefetch-distance:n1[,n2]

 /Qopt-streaming-cache-evict[:n]

 /Qopt-threads-per-core:n

For a list of deprecated compiler options, see the Compiler Options section of the

documentation.

3.3.5 /Qopenmp-offload[-] and /Qopenmp-simd[-] added to Composer XE 2013 SP1

These two options allow you to enable/disable the TARGET and SIMD features of OpenMP* 4.0

independently of support of the rest of OpenMP* (enabled with /Qopenmp). When /Qopenmp is

specified, /Qopenmp-offload and /Qopenmp-simd are set as well, allowing the use of these

features.

3.3.6 /Wpch-messages[-] added to Composer XE 2013 SP1

Functionality to enable or disable diagnostics related to pre-compiled headers has been added

to Composer XE 2013 SP1.

http://software.intel.com/en-us/blogs/2013/avx-512-instructions

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 22

3.3.7 Deprecated Options

Use following method to find all the deprecated compiler options:

1) Open a command prompt from Start menu: Start > All Programs > Intel Parallel Studio XE

2013 > Command Prompt > Parallel Studio XE with Intel Compiler XE v14.0 [Update xx] >

IA-32/Intel® 64 Visual Studio xxx mode

2) Run command:

>> icl /? deprecate

3.4 Other Changes

3.4.1 Pointer Checker requires a dynamic runtime library

When using the /Qcheck-pointers option, the runtime library libchkp.dll must be linked in.

When using options like /MT with /Qcheck-pointers, be aware that this dynamic library will

be linked in regardless of your settings. See the article at http://intel.ly/1jV0eWD for more

information.

3.4.2 KMP_DYNAMIC_MODE Environment Variable Support for “asat” Deprecated

Support for “asat” (automatic self-allocating threads) by the environment variable

KMP_DYNAMIC_MODE is now deprecated, and will be removed in a future release.

3.4.3 Build Environment Command Script Change

The command window script used to establish the build environment allows the optional

specification of the version of Microsoft Visual Studio to use. If you are not using the predefined

Start menu shortcut to open a build environment window, use the following command to

establish the proper environment:

"<install-dir>\bin\compilervars.bat" arch [vs]

Where arch is one of followings as appropriate for the target architecture you want to build for:

 ia32

 ia32_intel64

 intel64

vs is optional and can be one of followings. If vs is not specified, the version of Visual Studio

specified at installation time for command-line integration is used by default.

 vs2013

 vs2012

 vs2010

 vs2008

If you also have Intel® Visual Fortran Composer XE 2013 installed, this command will also

establish the environment for using that compiler.

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 23

The script file names iclvars.bat and ifortvars.bat have been retained for compatibility with

previous releases.

3.4.4 OpenMP* Static Libraries Removed

The static versions of the OpenMP* runtime libraries have been removed from this release. You

must link these runtimes dynamically.

3.4.5 Using Intel C++ Projects with a Source Control System

If your project is managed under a source control system, for example, Microsoft Visual Source

Safe* or Microsoft Visual Studio Team Foundation Server*, there are additional steps you must

follow in order to use the Intel C++ project system with your project. A detailed article on this

topic is available at http://intel.ly/pImnpo

3.5 Known Issues

3.5.1 Compiler Known Issues

3.5.1.1 Displaying online documentation with Internet Explorer 10*

A script used in the documentation may be blocked in Internet Explorer 10*. When this occurs,

the documentation will display as a blank page or the error message "Internet Explorer

restricted this page from running scripts or ActiveX controls" will appear. Click "Allow

blocked content” in order to display the documentation. If the error message does not

appear, go to Tools > Internet Options > Security in the Internet Explorer settings

and set it to "prompt before downloading potentially unsafe content."

3.5.1.2 Missing documentation for functions to check decimal floating-point status

To detect exceptions occurring during decimal floating-point arithmetic, use the following

floating-point exception functions:

Function Brief Description

fe_dec_feclearexcept Clears the supported floating-point exceptions

fe_dec_fegetexceptflag Stores an implementation-defined representation of the states

of the floating-point status flags

fe_dec_feraiseexcept Raises the supported floating-point exceptions

fe_dec_fesetexceptflag Sets the floating-point status flags

fe_dec_fetestexcept Determines which of a specified subset of the floating point

exception flags are currently set

The decimal floating-point exception functions are defined in the fenv.h header file.

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 24

Similar binary floating-point exception functions are described in ISO C99.

To compile the source using DFP, use the preprocessor macro __STDC_WANT_DEC_FP__.

3.5.1.3 Command-Line Diagnostic Issue for Filenames with Japanese Characters

The filename in compiler diagnostics for filenames containing Japanese characters may be

displayed incorrectly when compiled within a Windows command shell using the native

Intel® 64 architecture compiler. It is not a problem when using Visual Studio or when using the

Intel® 64 architecture cross-compiler or IA-32 architecture compiler

3.5.2 Visual Studio Known Issues

3.5.3 Showing Documentation Issue with Microsoft Visual Studio 2012* or 2013* and

Windows Server 2012*

If on Windows Server 2012* you find that you cannot display help or documentation from within

Visual Studio 2012* or 2013*, correcting a security setting for Microsoft Internet Explorer*

usually corrects the problem. From Tools > Internet Options > Security, change the

settings for Internet Zone to allow “MIME Sniffing” and “Active Scripting”.

3.5.3.1 MSVCP90D.dll (or other Microsoft runtime DLL) is missing

There are situations where the sample projects provided (or any Microsoft Visual C++* project

potentially) could run into a runtime System Error where the application cannot find a Microsoft

Visual Studio* runtime DLL. This is related to manifest files and SXS assemblies potentially

missing. The simplest solution is to go to your redist directory for the version of Microsoft Visual

Studio* you are using (default location would be c:\program files[(x86)]\Microsoft Visual Studio

X.X\VC\redist). There will be several subdirectories under this location, sorting files out by

amd64, x86 or Debug_NonRedist (if you have D in the runtime name, this usually indicates a

Debug library found in this folder). Find the appropriate folder that contains the runtime you are

looking for, and then copy the entire contents of that folder (including a .manifest file) to the

directory where the .exe you are trying to run is located.

3.5.3.2 Visual Studio 2010 sets default of /fp:precise

A project created in or converted to Visual Studio 2010 will have the command line option

/fp:precise set by default. This option sets the “floating point model” to improve consistency

for floating point operations by disabling certain optimizations, reducing performance. To set the

option back to the Intel default of /fp:fast, change the project property C++ > Optimization >

Floating Point Model to Fast.

3.5.3.3 Language packs of Visual Studio 2010

If you install a new language pack of Visual Studio 2010 after installing the Intel C++ Composer

XE 2013, you may not see the Intel C++ Compiler specific options in the Project Property dialog.

Please try the following to fix the issue:

1) If directory “<program files>

\MSBuild\Microsoft.Cpp\v4.0\Platforms\[Win32|x64]\PlatformToolset

s\Intel C++ Compiler XE 14.0\1033" exists, copy all files to “<program

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 25

files>\MSBuild\Microsoft.Cpp\v4.0\Platforms\[Win32|x64]\PlatformT

oolsets\Intel C++ Compiler XE 14.0\<locale-ID>”.

2) If directory "<program files>

\MSBuild\Microsoft.Cpp\v4.0\Platforms\[Win32|x64]\PlatformToolset

s\v100\1033\" exists, copy all files to “<program files>

\MSBuild\Microsoft.Cpp\v4.0\Platforms\[Win32|x64]\PlatformToolset

s\v100\<locale-ID>”.

* The <locale-ID> is the language pack.

Another method is to uninstall the Intel C++ Composer XE 2013 and reinstall the Intel C++

Composer XE 2013.

3.5.4 Intel® Cilk™ Plus Known Issues

 Microsoft C++ Structured Exception Handling (SEH) will fail if an SEH exception is thrown

after a steal occurs and before the corresponding _Cilk_sync.

3.5.5 Guided Auto-Parallel Known Issues

Guided Auto Parallel (GAP) analysis for single file, function name or specific range of source

code does not work when Whole Program Interprocedural Optimization (/Qipo) is enabled. The

workaround is to disable /Qipo – in Visual Studio, this is Project > [projectname]

Properties > C++ > Optimization > Interprocedural Optimization > No.

3.5.6 Static Analysis Known Issues

3.5.6.1 Excessive false messages on C++ classes with virtual functions

Note that use of the Static Analysis feature also requires the use of Intel® Inspector XE.

Static Analysis reports a very large number of incorrect diagnostics when processing any
program that contains a C++ class with virtual functions. In some cases the number of spurious
diagnostics is so large that the result file becomes unusable.

If your application contains this common C++ source construct, add the following command line

switch to suppress the undesired messages:/Qdiag-disable:12020,12040 (Windows) or –

diag-disable 12020,12040 (Linux). This switch must be added at the link step

because that is when static analysis results are created. Adding the switch at the compile
step alone is not sufficient. In Microsoft Visual Studio, add this to the property page Linker >
Command Line.

If you are using a build specification to perform static analysis, add the –disable-id

12020,12040 switch to the invocation of the inspxe-runsc, for example,
 inspxe-runsc –spec-file mybuildspec.spec -disable-id 12020,12040

If you have already created a static result that was affected by this issue and you are able to
open that result in the Intel® Inspector XE GUI, then you can hide the undesired messages as
follows:

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 26

 The messages you will want to suppress are “Arg count mismatch” and “Arg type

mismatch”. For each problem type, do the following:

 Click on the undesired problem type in the Problem filter. This hides all other problem
types.

 Click on any problem in the table of problem sets

 Type control-A to select all the problems

 Right click and select Change State -> Not a problem from the pop-up menu to set the
state of all the undesired problems

 Reset the filter on problem type to All

 Repeat for the other unwanted problem type

 Set the Investigated/Not investigated filter to Not investigated. You may have to scroll
down in the filter pane to see it as it is near the bottom. This hides all the undesired
messages because the “Not a problem” state is considered a “not investigated” state.

4 Developing Applications for Intel® Many Integrated Core

Architecture (Intel® MIC Architecture)
This section summarizes changes, new features and late-breaking news about the Intel

Composer XE 2013 for Windows* including Intel® MIC Architecture.

4.1 About Intel® Composer XE 2013 SP1 for Windows* including Intel®

MIC Architecture
The Intel® Composer XE 2013 SP1 for Windows* including Intel® MIC Architecture extends the

feature set of the Intel® C++ Composer XE 2013 and the Intel® Fortran Composer XE 2013

products by enabling predefined sections of code to execute on an Intel® Xeon Phi™

coprocessor.

These sections of code run on the coprocessor if it is available. Otherwise, they run on the host

CPU.

This document uses the terms coprocessor and target to refer to the target of an offload

operation.

The current components of Intel® Composer XE 2013 SP1 that support Intel® MIC Architecture

are the:

 Intel® C++ and Fortran Compilers

 Intel® Debugger Extension for Intel® Many Integrated Core Architecture (Intel® MIC

Architecture)

 Intel® Math Kernel Library (Intel® MKL)

 Intel® Threading Building Blocks (Intel® TBB)

 Visual Studio* IDE Integration

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 27

4.2 Getting Started
There is only one compiler that generates code both for Intel® 64 architecture and for Intel®

MIC Architecture. Ensure you are using the compiler for Intel® 64 architecture from the

command line or via the pre-provided shell in the Start Menu, or using an “x64” configuration in

the Microsoft Visual Studio IDE*. Refer to the Notes section below for further changes.

4.3 Product Documentation
Documentation concerning the Intel® MIC Architecture for Composer XE 2013 SP1 is currently

undergoing change. For the latest documentation updates, please go to our web site at

http://intel.ly/MxPFYx.

4.4 Intel® Math Kernel Library (Intel® MKL)
For details on Intel® MIC Architecture support, see the section on Intel MKL.

4.5 Notes

4.6 Intel C++ Compiler

4.6.1 Limitations of _Cilk_shared in Composer XE 2013 SP1

 A virtual base class may not have the _Cilk_shared attribute

 A class with the _Cilk_shared attribute may not be derived from multiple base

classes (multiple inheritance is disallowed)

 A class with the _Cilk_shared attribute may not define a virtual destructor

 A class with the _Cilk_shared attribute, if used as a base class of another

_Cilk_shared class, must be rounded up to be a multiple of 8 in size by the

programmer (by adding dummy fields as needed)

 _Cilk_offload may not be used in a program that uses shared libraries (DLLs)

4.6.2 Using offload code in shared libraries requires main program to be linked with

/Qoffload:mandatory or /Qoffload:optional option

There is initialization required for offload that can only be done in the main program. For offload

code in shared libraries, this means that the main program must also be linked for offload so

that the initialization happens. This will happen automatically if the main code or code statically

linked with the main program contains offload constructs. If that is not the case, you will need to

link the main program with the /Qoffload:mandatory or /Qoffload:optional compiler

options.

4.6.3 Missing symbols not detected at link time

In the offload compilation model, the binaries targeting the Intel® MIC Architecture are

generated as dynamic libraries (.so). Dynamic libraries do not need all referenced variables or

routines to be resolved during linking as these can be resolved during load time. This behavior

could mask some missing variable or routine in the application resulting in a failure during load

time. In order to identify and resolve all missing symbols at link time, use the following command

line option to list the unresolved variables.

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 28

/Qoffload-option,mic,compiler,"-z defs"

4.6.4 *MIC* tag added to compile-time diagnostics

The compiler diagnostics infrastructure is modified to add an additional offload *MIC* tag to the

output message to allow differentiation from the Target (Intel® MIC Architecture) and the host

CPU compilations. The additional tag appears only in the Target compilation diagnostics issued

when compiling with offload extensions for Intel® MIC Architecture.

In the examples below the sample source programs trigger identical diagnostics during both the

host CPU and Target Intel® MIC Architecture compilations; however, some programs will

generate different diagnostics during these two compilations. The new tag permits easier

association with either the CPU or Target compilation.

$ icl -c sample.c

sample.c(1): warning #1079: *MIC* return type of function "main" must

be "int"

 void main()

 ^

sample.c(5): warning #120: *MIC* return value type does not match the

function type

 return 0;

 ^

sample.c(1): warning #1079: return type of function "main" must be

"int"

 void main()

 ^

sample.c(5): warning #120: return value type does not match the

function type

 return 0;

4.6.5 Runtime Type Information (RTTI) not supported

Runtime Type Information (RTTI) is not supported under the Virtual-Shared memory

programming method; specifically, use of dynamic_cast<> and typeid() is not supported.

4.6.6 Direct (native) mode requires transferring runtime libraries like libiomp5.so to

coprocessor

The Intel® Manycore Platform Software Stack (Intel® MPSS) does not include Intel compiler

libraries under /lib, for example the OpenMP* library, libiomp5.so.

When running OpenMP* applications in direct mode (i.e. on the coprocessor card), users must

first upload (via scp) a copy of the Intel® MIC Architecture OpenMP* library

(<install_dir>\compiler\lib\mic\libiomp5.so) to the card (device names will be of

the format micN, where the first card will be named mic0, the second mic1, and so on) before

running their application.

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 29

Failure to make this library available will result in a run-time failure like:

/libexec/ld-elf.so.1: Shared object "libiomp5.so" not found, required

by "sample"

This can also apply to other compiler runtimes like libimf.so. The required libraries will depend

on the application and how it’s built.

4.6.7 Calling exit() from an offload region

When calling exit() from within an offload region, the application terminates with an error

diagnostic “offload error: process on the device 0 unexpectedly exited

with code 0”

4.7 Intel® Debugger Extension for Intel® Many Integrated Core

Architecture (Intel® MIC Architecture)
This section summarizes new features and changes, usage and known issues related to the

Intel® Debugger Extension. This debugger extension only supports code targeting Intel® Many

Integrated Core Architecture (Intel® MIC Architecture).

4.7.1 Features

• Support for both native coprocessor applications and host applications with offload

extensions

• Debug multiple coprocessor cards at the same time (with offload extension)

4.7.2 Using the Intel® Debugger Extension

The Intel® Debugger Extension is a plug-in for Microsoft Visual Studio* IDE. It transparently

enables debugging of projects defined by that IDE. Applications for Intel® Xeon Phi™ can be

either loaded and executed or attached to.

Before starting Microsoft Visual Studio IDE, additional environment variables need to be set in

order to debug offload enabled Intel® Xeon Phi™ applications. Depending on the version of the

Intel® Manycore Platform Software Stack (Intel® MPSS) set the following variables:

 Intel® MPSS 3.1:

AMPLXE_COI_DEBUG_SUPPORT=TRUE

MYO_WATCHDOG_MONITOR=-1

 Intel® MPSS 2.1:

COI_SEP_DISABLE=FALSE

MYO_WATCHDOG_MONITOR=-1

4.7.2.1 Loading and executing an application for Intel® Xeon Phi™ Coprocessor

This is only possible for applications using any of the two the offload models. Open a project for

Intel® Xeon Phi™ coprocessor and start a debug session via the menu Debug->Start

Debugging. The scope of coprocessors and information shown during the debug session

(threads, breakpoints, etc.) depends on the use of the offload model. Hence, if the offload model

is not used, no code is executed on the coprocessor.

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 30

4.7.2.2 Attaching to Process on Intel® Xeon Phi™ Coprocessor

This is only possible for applications running natively on the Intel® Xeon Phi™ coprocessor. The

process to debug needs to run already on the coprocessor in order to continue.

Next, the process binary needs to be specified for Microsoft Visual Studio* IDE. This is done via

menu Tools->Options…:

For “Host Binary Directory” specify the directory containing (a copy of) the binary that is to be

debugged on the coprocessor. The root directory for finding the sources can be specified by

“Host Source Directory”. Optionally search paths to shared libraries for the coprocessor

application can be added in the “solib-search-path directories” text field. The semantic is the

same as for GNU* GDB.

4.7.3 Documentation

The full documentation for the Intel® Debugger Extension can be found here:

<install-

dir>\Documentation\[en_US|ja_JP]\debugger\mic\vsmigdb_config_guide.pdf

4.7.4 Known Issues and Limitations

 Offload debugging is only supported in Microsoft Visual Studio 2012* or Microsoft Visual

Studio 2013*.

 Data breakpoints are not yet supported within offload sections.

 Disassembly window cannot be scrolled outside of 1024 bytes from the starting address

within an offload section.

 Handling of exceptions from the Intel® MIC Architecture application is not supported.

 Changing breakpoints while the application is running does not work. The changes will

appear to be in effect but they are not applied.

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 31

 Starting an Intel® MIC Architecture native application is not supported. You can attach to

a currently running application, though.

 Under certain conditions, the Thread Window does not show all threads running on the

coprocessor.

 The Thread Window in Microsoft Visual Studio* offers context menu actions to Freeze,

Thaw and Rename threads. These context menu actions are not functional when the

thread is on a coprocessor.

 Setting a breakpoint right before an offload section sets a breakpoint at the first

statement of the offload section. This only is true if there is no statement for the host

between set breakpoint and offload section. This is normal Microsoft Visual Studio*

breakpoint behavior but might become more visible with interweaved code from host and

coprocessor. The superfluous breakpoint for the offload section can be manually

disabled (or removed) if desired.

 Under certain conditions, debugging into offloaded code can stop the execution. The

source position seems to be the offload directive but the execution is actually inside a

library routine. You should be able to continue execution from that point.

 Only Intel® 64 applications containing offload sections can be debugged with the Intel®

Debugger Extension for Intel® Many Integrated Core Architecture.

 Stepping out of an offload section does not step back into the host code. It rather

continues execution without stopping (unless another event occurs). This is intended

behavior.

 The functionality “Set Next Statement” is not working within an offload section.

 If breakpoints have been set for an offload section in a project already, starting the

debugger might show bound breakpoints without addresses. Those do not have an

impact on functionality.

 For offload sections, setting breakpoints by address or within the Disassembly window

won’t work.

 For offload sections, using breakpoints with the following conditions of hit counts do not

work: “break when the hit count is equal to” and “break when the hit count is a multiple

of”.

 The following options in the Disassembly window do not work within offload sections:

“Show Line Numbers”, “Show Symbol Names” and “Show Source Code”

 Evaluating variables declared outside the offload section shows wrong values.

5 Intel® Integrated Performance Primitives
This section summarizes changes, new features and late-breaking news about this version of

Intel® Integrated Performance Primitives (Intel® IPP).

The latest information on Intel® IPP 8.1 can be found in the product release notes under

<install dir>\Documentation\<locale>\ipp\ReleaseNotes.htm.

For detailed information about IPP see the following links:

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 32

 New features: see the information below and visit the main Intel IPP product page on

the Intel web site at: http://intel.ly/OG5IF7; and the Intel IPP Release Notes at

http://intel.ly/OmWI4d.

 Documentation, help, and samples: see the documentation links on the IPP product

page at: http://intel.ly/OG5IF7.

5.1 Intel® IPP Cryptography Libraries are Available as a Separate

Download
The Intel® IPP cryptography libraries are available as a separate download. For download and

installation instructions, please read http://intel.ly/ndrGnR

5.2 Intel® IPP Code Samples
The Intel® IPP code samples are organized into downloadable packages at

http://intel.ly/pnsHxc

The samples include source code for audio/video codecs, image processing and media player

applications, and for calling functions from C++, C# and Java*. Instructions on how to build the

sample are described in a readme file that comes with the installation package for each sample.

6 Intel® Math Kernel Library
This section summarizes changes, new features and late-breaking news about this version of

the Intel® Math Kernel Library (Intel® MKL). All the bug fixes can be found here:

http://intel.ly/OeHQqf

6.1 Notices
Please refer to the Knowledge Base article on Deprecations for more information on the

following notices

 Intel® MKL now provides a choice of components to install. Components necessary for

PGI* compiler, Compaq Visual Fortran* Compiler, SP2DP interface, BLAS95 and

LAPACK95 interfaces, Cluster support (ScaLAPACK and Cluster DFT) and Intel® Many

Integrated Core Architecture (Intel® MIC Architecture) support are not installed unless

explicitly selected during installation

 Unaligned Conditional Numerical Reproducibility (CNR) is not available for Intel MKL

Cluster components (ScaLAPACK and Cluster DFT)

 Examples for using Intel MKL with Boost* uBLAS and Java* have been removed from

product distribution and placed in the following articles:

o How to use Intel MKL with Java*

o How to use Boost* uBLAS with Intel MKL

http://software.intel.com/en-us/articles/intel-mkl-whats-deprecated/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-how-do-i-use-intel-mkl-with-java
http://software.intel.com/en-us/articles/how-to-use-boost-ublas-with-intel-mkl

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 33

6.2 Changes in This Version

6.2.1 What’s New in Intel MKL 11.1 Update 4

 Added a customizable error handler; see the Intel Math Kernel Library Reference

Manual description of mkl_set_exit_handler() for further details

 Extended the Intel® Xeon Phi™ coprocessor Automatic Offload feature with a resource

sharing mechanism; see the Intel Math Kernel Library Reference Manual description of

mkl_mic_set_resource_limit() function and the MKL_MIC_RESOURCE_LIMIT

environment variable for further details

 BLAS:

o Improved performance of ?TRSM and ?SYMM in Automatic Offload mode on

Intel® Many Integrated Core Architecture (Intel® MIC Architecture)

o Improved threaded performance of ?GEMM for all 64-bit architectures supporting

Intel® Advanced Vector Extensions 2 (Intel® AVX2)

o Improved threaded performance of ?AXPBY for all Intel processors

o Optimized ?COPY on Intel AVX2 and Intel AVX512 instruction sets

o Improved performance of SSYR2K for 64-bit processors supporting Intel®

Advanced Vector Extensions (Intel® AVX) and Intel AVX2

o Reduced stack usage for CHEMM, CHERK, CHER2K, {D,C}SYRK, and

{D,C}SYR2K

 LAPACK:

o Improved performance of (S/D/C/Z)GE(SVD/SDD) when M>=N and singular

vectors are not needed

o Improved performance of ?GELSX, ?GGSVP

o Improved performance of ?POTRF UPLO=U in Automatic Offload mode on Intel

MIC Architecture

 Intel MKL PARDISO:

o Added the ability to store the Intel MKL PARDISO handle to the disk for future

use at any solver stage

o Added capability to free memory taken by original matrix after factorization stage

if iterative refinement is disabled

o Added example demonstrating use of Intel MKL PARDISO as an iterative solver

for non-linear systems

o Improved message output from Intel MKL PARDISO

o Added support of zero pivot during factorization for structurally symmetric cases

 VSL RNG:

o Improved performance of the Wichmann-Hill basic random number generator on

CPUs supporting Intel AVX and Intel AVX2 instruction sets

o Improved performance of the MRG32K3A basic random number generator on

Intel® 64 architecture CPUs supporting Intel AVX instruction set

6.2.2 What's New in Intel MKL 11.1 Update 3

 BLAS:
o Improved performance of Level 3 BLAS functions for 64-bit processors

supporting Intel® Advanced Vector Extensions 2 (Intel® AVX2)

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 34

o Improved performance of matrix generation in the heterogeneous Intel®

Optimized MP LINPACK Benchmark for Clusters
o Optimized ?GEMM, ?TRSM, DTRMM for the Intel® Advanced Vector Extensions

512 (Intel® AVX-512) instruction set
 LAPACK:

o Improved performance of ?(SY/HE)RDB
o Improved performance of ?(SY/HE)(EV/EVR/EVD) when eigenvectors are not

needed
o Improved performance of ?SY(EV/EVD) when eigenvectors are needed

o Improved performance of NaN checkers in LAPACKE interfaces

o Improved performance of DGETRF for processors supporting Intel AVX2
o Added Automatic Offload for ?SYRDB on Intel® Many Integrated Core

Architecture (Intel® MIC Architecture), which speeds up DSY(EV/EVD) when
eigenvectors are not needed

 Sparse BLAS:
o Added example for diagonal format matrix

 Intel MKL PARDISO:
o Improved memory estimation of out-of-core (OOC) portion size for reordering

algorithm leading to improved factorization-solving step performance in OOC

mode
o Added pivot control support for nonsymmetric matrices and OOC mode

o Added diagonal extraction support for nonsymmetric matrices and OOC mode
 Extended Eigensolver:

o Improved output message
o Improved examples

o Added input and output iparm parameters in predefined interfaces for solving
sparse problems

 FFT:

o Optimized the whole range of FFTs for Intel® Advanced Vector Extensions
512 (Intel® AVX-512) instruction set

o Improved performance of FFT for lengths which are not powers of two on
Intel MIC Architecture

6.2.3 What’s New in Intel MKL 11.1 update 2

 Introduced support for Intel® Atom™ processors

 BLAS:

o Improved performance of ?GEMM for m==1 or n==1 on all Intel architectures

o Improved MP LINPACK performance for systems using Intel® Many Integrated

Core Architecture (Intel® MIC Architecture)

o Improved performance of ?GEMM for outer product [large M, large N, small K]

and tall skinny matrices [large M, medium N, small K] on Intel MIC Architecture

o Improved performance of ?SYMM on Intel MIC Architecture

o Improved {S/D}GEMM single thread performance on small matrices for 64-bit

processors supporting Intel® Advanced Vector Extensions (Intel® AVX) and

Intel® Advanced Vector Extensions 2 (Intel® AVX2)

o Improved DGEMV performance for 64-bit processors supporting Intel AVX2

o Improved threaded performance of {S,D,C,Z}GEMV for notrans:n>>m and

trans:m>>n on all Intel architectures

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 35

o Improved DSYR2K performance for 64-bit processors supporting Intel AVX and

Intel AVX2

o Improved DTRMM performance on small matrices (A matrix size <= 10) for 64-bit

processors supporting Intel AVX and Intel AVX2

o Reduced stack usage for ZHEMM and ZSYRK

o Added more detailed error messages for running Offload MP LINPACK scripts

with unsupported configurations

 LAPACK:

o Improved performance of (S/D)SYRDB and (D/S)SYEV for large dimensions and

UPLO=L when eigenvectors are needed

o Improved performance of ?GELQF,?GELS and ?GELSS for underdetermined

case (M

o Improved performance of ?GEHRD,?GEEV and ?GEES

o Added Automatic Offload to Intel® Xeon Phi™ coprocessor for DSYRDB

UPLO=L

 Sparse BLAS:

o Optimized SpMV kernels for Intel® Advanced Vector Extensions 512 (Intel®

AVX-512) instruction set

o Improved Sparse BLAS level 2 and 3 performance for systems supporting Intel®

Streaming SIMD Extensions 4.2 (Intel® SSE4.2), Intel AVX, and Intel AVX2

instruction sets

 PARDISO:

o Improved memory estimation of out-of-core portion size for reordering algorithm

leading to improved factorization-solving step performance in OOC mode

 VML:

o Added v[d|s]Frac function computing fractional part for each vector element

 VSL RNG:

o Improved performance of MRG32K3A, and MT2203 BRNGs on Intel Xeon Phi

coprocessors

o Improved performance of MT2203 BRNG on CPUs supporting Intel AVX and

Intel AVX2 instruction sets

 VSL Summary Statistics:

o Added support for computation of group/pooled

(VSL_SS_GROUP_MEAN/VSL_SS_POOLED_MEAN) mean estimates

6.2.4 What's New in Intel MKL 11.1 update 1

 Introduced support for Intel® AVX-512 instructions set with limited set of optimizations
 BLAS:

o Improved performance of DSDOT, and added support for multiple threads, on all
64-bit Intel processors supporting Intel® Advanced Vector Extensions (Intel®
AVX) and Intel® Advanced Vector Extensions 2 (Intel® AVX2)

o Improved handling of denormals on the diagonal in *TRSM
o Improved SGEMM performance for small N and large M and K on Intel® Many

Integrated Core Architecture (Intel® MIC Architecture)

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 36

o Improved parallel performance of *HEMM on all Intel processors supporting
Intel® SSE4.2 and later

o Improved parallel performance of 64-bit *SYRK/*HERK on all Intel processors
supporting Intel® SSSE3 and later

o Improved serial performance of 64-bit {D,S}SYRK on all Intel processors
supporting Intel® SSE4.2 and later

o Improved performance of DTRSM on Intel® MIC Architecture
o Enhanced Intel® Optimized HPL Benchmark runmultiscript capabilities for Intel

processors supporting Intel® AVX
o Improved Intel® Optimized HPL Benchmark performance on Intel® MIC

Architecture
 LAPACK

o Decreased memory utilization for parallel LAPACK functions
(OR/UN)M(QR/RQ/QL/LQ)

o Decreased stack memory utilization in LAPACK functions
o Improved performance of (S/D)SYRDB and (S/D)SYEV for large dimensions

when eigenvalues are only needed
 ScaLAPACK

o Updated PBLAS headers to mix default NETLIB and MKL complex datatypes
 DFT: Optimized complex-to-complex and real-to-complex transforms
 Transposition: Improved performance of mkl_?omatcopy routines on tall and skinny

matrices
 DFTI interface and FFTW wrappers are now thread safe. setting

NUMBER_OF_USER_THREADS parameter when using MKL DFT from parallel regions
became optional.

6.2.5 What's New in Intel MKL 11.1

 Conditional Numerical Reproducibility : Introduced support for Conditional Numerical

Reproducibility (CNR) mode on unaligned data

 Intel MKL now supports compiler assisted offload and Automatic offload programming

model on Intel Xeon Phi™ coprocessors based on the Intel® Many Integrated Core

Architecture (Intel® MIC Architecture) on Windows* OS*

 Improved performance of CNR=AUTO mode on recent AMD* systems

 BLAS:

o Improved performance of [S/D]GEMV on all Intel processors supporting Intel®

SSE4.2 and later

o Optimized [D/Z]GEMM and double-precision Level 3 BLAS functions on Intel®

Advanced Vector Extensions 2 (Intel® AVX2)

o Optimized [Z/C]AXPY and [Z/C]DOT[U/C] on Intel® Advanced Vector Extensions

(Intel® AVX) and Intel AVX2

o Optimized sequential version of DTRMM on Intel MIC Architecture

o Tuned DAXPY on Intel AVX2

 LAPACK:

o Improved performance of (S/D)SYRDB and (S/D)SYEV for large dimensions

when only eigenvalues are needed

o Improved performance of xGESVD for small sizes like M,N<10

 VSL:

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 37

o Added support and examples for mean absolute deviation

o Improved performance of Weibull Random Number Generator (RNG) for alpha=1

o Added support of raw and central statistical sums up to the 4th order, matrix of

cross-products and median absolute deviation

o Added a VSL example designed by S. Joe and F. Y. Kuo illustrating usage of

Sobol QRNG with direction numbers which supports dimensions up to 21,201

o Improved performance of SFMT19937 Basic Random Number Generator

(BRNG) on Intel MIC Architecture

 DFT:

o Improved performance of double precision complex-to-complex transforms on

Intel MIC Architecture

o Optimized complex-to-complex DFT on Intel AVX2

o Optimized complex-to-complex 2D DFT on Intel® Xeon processor E5 v2 series

o Improved performance for workloads specific to GENE application on Intel Xeon

E5-series (Intel AVX) and on Intel AVX2

o Improved documentation data layout for DFTI compute functions

o Introduced scaling in large real-to-complex FFTs

 Data Fitting:

o Improved performance of df?Interpolate1D and df?SearchCells1D functions on

Intel Xeon processors and Intel MIC Architecture

o Improved performance of df?construct1d function for linear and

Hermite/Bessel/Akima cubic types of splines on Intel MIC Architecture, Intel®

Xeon® processor X5570 and Intel® Xeon® processor E5-2690

 Transposition

o Improved performance of in-place transposition for square matrices

 Examples and tests for using Intel MKL are now packaged as an archive to shorten the

installation time

 Link Tool and Link Line advisor: Added support for Intel MIC Architecture on Windows*

OS

6.3 Attributions
As referenced in the End User License Agreement, attribution requires, at a minimum,

prominently displaying the full Intel product name (e.g. "Intel® Math Kernel Library") and

providing a link/URL to the Intel® MKL homepage (http://www.intel.com/software/products/mkl)

in both the product documentation and website.

The original versions of the BLAS from which that part of Intel® MKL was derived can be

obtained from http://www.netlib.org/blas/index.html.

The original versions of LAPACK from which that part of Intel® MKL was derived can be

obtained from http://www.netlib.org/lapack/index.html. The authors of LAPACK are E. Anderson,

Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.

Hammarling, A. McKenney, and D. Sorensen. Our FORTRAN 90/95 interfaces to LAPACK are

similar to those in the LAPACK95 package at http://www.netlib.org/lapack95/index.html. All

interfaces are provided for pure procedures.

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 38

The original versions of ScaLAPACK from which that part of Intel® MKL was derived can be

obtained from http://www.netlib.org/scalapack/index.html. The authors of ScaLAPACK are L. S.

Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,

G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.

The Intel® MKL Extended Eigensolver functionality is based on the Feast Eigenvalue Solver 2.0

http://www.ecs.umass.edu/~polizzi/feast/

PARDISO in Intel® MKL is compliant with the 3.2 release of PARDISO that is freely distributed

by the University of Basel. It can be obtained at http://www.pardiso-project.org.

Some FFT functions in this release of Intel® MKL have been generated by the SPIRAL software

generation system (http://www.spiral.net/) under license from Carnegie Mellon University. The

Authors of SPIRAL are Markus Puschel, Jose Moura, Jeremy Johnson, David Padua, Manuela

Veloso, Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang

Chen, Robert W. Johnson, and Nick Rizzolo.

7 Intel® Threading Building Blocks
For information on changes in this version of Intel® Threading Building Blocks, please read the

file CHANGES in the TBB documentation directory.

7.1 Known Issues
Please note the following with respect to this particular release of Intel Threading Building

Blocks.

7.1.1 Library Issues

 If you are using Intel Threading Building Blocks and OpenMP* constructs mixed

together in rapid succession in the same program, and you are using Intel compilers

for your OpenMP* code, set KMP_BLOCKTIME to a small value (e.g., 20

milliseconds) to improve performance. This setting can also be made within your

OpenMP* code via the kmp_set_blocktime() library call. See the Intel compiler

OpenMP* documentation for more details on KMP_BLOCKTIME and

kmp_set_blocktime().

 In general, non-debug ("release") builds of applications or examples should link

against the non-debug versions of the Intel Threading Building Blocks libraries, and

debug builds should link against the debug versions of these libraries. On Windows

systems, compile with /MD and use Intel Threading Building Blocks release libraries,

or compile with /MDd and use debug libraries; not doing so may cause run-time

failures. See the Tutorial in the product "Documentation" sub-directory for more

details on debug vs. release libraries.

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 39

8 Disclaimer and Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R)

PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO

ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS

PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL

ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR

IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS

INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR

PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR

OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING

BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY

APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A

SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked

"reserved" or "undefined." Intel reserves these for future definition and shall have no

responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The information here is subject to change without notice. Do not finalize a design with this

information.

The products described in this document may contain design defects or errors known as errata

which may cause the product to deviate from published specifications. Current characterized

errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and

before placing your product order.

Copies of documents which have an order number and are referenced in this document, or

other Intel literature, may be obtained by calling 1-800-548-4725, or go to:

http://www.intel.com/design/literature.htm

Intel processor numbers are not a measure of performance. Processor numbers differentiate

features within each processor family, not across different processor families. Go to:

http://www.intel.com/products/processor%5Fnumber/

The Intel® C++ Compiler, Intel® Integrated Performance Primitives, Intel® Math Kernel Library,

and Intel® Threading Building Blocks are provided under Intel’s End User License Agreement

(EULA).

The GNU* Project Debugger, GDB is provided under the General GNU Public License GPL V3.

Please consult the licenses included in the distribution for details.

http://www.intel.com/products/processor_number/

Intel® C++ Composer XE 2013 SP1 for Windows*
Installation Guide and Release Notes 40

Celeron, Centrino, Intel, Intel logo, Intel386, Intel486, Atom, Core, Itanium, MMX, Pentium,

VTune, Cilk, Xeon Phi, and Xeon are trademarks of Intel Corporation in the U.S. and other

countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2015 Intel Corporation. All Rights Reserved.

