UEFI Secure Boot in Linux*

Vincent Zimmer – Principal Engineer, Intel Corporation
Philip Oswald – Project Manager, SUSE
Gary Lin – Software Engineer, SUSE
Agenda

• Problem Statement
• What is UEFI Secure Boot
• Introduction to Machine Owner Key
• Secure Boot in SUSE Linux
• Demo
Problem Statement
Secure Boot Problem

• Malware moving more into the platform
• UEFI extensibility can be exploited by unauthorized parties
• Attacks increasingly targeting the platform firmware
 – Black Hat 2007, 2009, 2013, CanSecWest 2013...
• Need to balance UEFI code loading controls and maintain platform owner and user choice
 – Maintain ability to have several operating systems on the platform
 – Provide platform owner a choice for software
What is UEFI Secure Boot
UEFI Secure Boot

1. Enroll

Authenticated Variables
- PEI FV
- KEK
- PK
- db
- dbx

DXE FV
- Image Verify

Certificate
SignInfo

2A. Signed Image Discover
- Certificate + SignInfo
- OpRom.efi

2B. Signature Verification

3. Post ship update DB

Load

2C. Signed Image Load

OsLoader.efi
- Certificate + SignInfo

Cloud

Update DB
The full solution

Intel® Device Protection Technology with Boot Guard – Secure Boot Policy Enforcement

End to end platform integrity
Secure Boot Challenges for Linux*

• Dual OS deployment challenge
 – Users can disable UEFI Secure Boot to install Linux* but this isn’t the best deployment plan
 – Users must have an option to install Linux alongside an OS, even when UEFI Secure Boot is enabled

• Linux can benefit from UEFI Secure Boot, if...
 – Customers can install Linux without disabling the feature
 – Platform owner can set security policy and customize system

• Different roles interact with UEFI Secure Boot
 – Kernel hacker – disable or enroll own keys w/firmware screens
 – Consumer – just want it to work, seamless boot of live images
 – Managed IT machine – IT is the ‘owner.’ Control end user actions.

Linux distributions have several options to implement secure boot
Introduction to Machine Owner Key
Machine Owner Key (MOK)

• To support UEFI Secure Boot in Linux*, there are two challenges to overcome
 – Coexist with other operating systems
 – Avoid the potential General Public License (GPL) copyright issues caused by the UEFI image signature

• MOK gives back the key management control to users or security admin
SUSE Solution

MOK comprised of 4 parts

1. **shim**
 - A BSD licensed preloader of the OS loader (grub2) signed with the db key
 - All involved components are signed

2. **MOK database** - The key database implemented in a UEFI nvram variable, MOKList

3. **MokManager**
 - The UEFI program to manipulate the MOK database

4. **mokutil**
 - The Linux* utility program to issue requests to MokManager
MOK Database

- The MOK database is used as a boot service non-volatile variable
- UEFI Boot Service non-volatile variables are immune from threats from OS
- MOKList is not the db and does not need to be controlled by KEK

<table>
<thead>
<tr>
<th></th>
<th>Boot Service</th>
<th>Runtime Service</th>
<th>Authenticated</th>
</tr>
</thead>
<tbody>
<tr>
<td>UEFI - Read</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>UEFI - Write</td>
<td>Yes</td>
<td>Yes</td>
<td>Restricted</td>
</tr>
<tr>
<td>OS - Read</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>OS - Write</td>
<td>No</td>
<td>Yes</td>
<td>Restricted</td>
</tr>
</tbody>
</table>

'MOKList is not accessible at OS runtime'
UEFI Secure Boot With MOK

shim is loaded before other UEFI images
Multi-boot with MOK

Load the UEFI image as long as it is trusted
Enroll A New MOK Key

1. request

Reboot

mokutil --import

Password Hash

2. detect

shim

3. verify

MokManager

4. enroll

MOKList

RT Var

5. reboot

custom boot path

RT: Runtime

Password Hash

User

User

Password Hash

User
Secure Boot in SUSE Linux*
Either the UEFI CA key or SUSE key will let the shim boot with UEFI secure boot
Linux* Driver Verification

- All kernel drivers have to be signed with the SUSE key
- Linux* kernel verifies drivers with the built-in SUSE key or MOK keys
- SUSE will NOT sign any binary driver that is incompatible with GPLv2
- The user is free to enroll the key for the third party binary driver
- SUSE's Partner Linux Driver Program (PLDP) - simplifies MOK implementation

Users can get their 3rd party drivers included in the secure boot with MOK
Third Party Driver Verification

Boot Service
- shim

Runtime
- kernel
 - verify
- copy
- MOKListRT (User)

3rd Party Driver
- User
- Signature
SUSE Summary and Call to Action

- UEFI Secure Boot no longer an issue to the Linux* World
- With MOK, users select the keys they trust
- Linux systems benefit from MOK to ensure the integrity of the drivers

Call to action:

- Use MOK in your Linux deployments
- Put SUSE key in UEFI database to test multi-signed shim
- Utilize SUSE's Partner Linux Driver Program for delivering kernel drivers compatible with SUSE Linux Enterprise and Secure Boot
 - https://www.suse.com/partners/linux-driver-program/
Summary

• Attacks against the platform will most likely continue
• Deploy UEFI Secure Boot to address pre-OS malware
• Design a robust platform implementation
• Avoid ‘restricted boot’ & continue to enable platform owner choice of UEFI Secure Booted code
• Emergent tools for choice include multi-signed images, the Shim Loader, and Machine Owner Key
• Machine Owner Key provides practical solution for implementing key management
Updates from Linux* Distributions

- **Ubuntu** 12.10 – 64-bit version of Ubuntu 12.10 shipped with Shim to support secure boot
- **Fedora** 19 – included Shim with MOK (Machine Owned Key) functionality
- **OpenSUSE** 12.3 release supports MOK manager and multisigned Shim loader
- **SUSE SLES 11 SP3** - included multisigned Shim with MOK functionality and runtime Mokutil
- **Linux Foundation Secure Boot System Released**
- **UEFI Technology Adopted by Linux Community†**

Intel UEFI Community Resource Center

Welcome to Intel UEFI Community Resource Center
Your gateway for developing UEFI firmware, drivers, and applications for use on Intel® architecture platforms.

Learn more about UEFI>

Learn. Training courses and Intel® Developer Forum presentation library »

Communicate. Forum for discussions with Intel engineers and other developers »

Share. Upload and download files for sharing with the community »

Develop. Intel UEFI technology, software and tools, specs, and docs »

Find solutions. Get conforming devices, BIDS, and drivers from participating vendors »

Central resource for UEFI on Intel® Architecture
Additional Sources of Information

PDF of this presentation is available is available from our Technical Session Catalog: www.intel.com/idosessionsSF. The URL is on top of Session Agenda Pages in Pocket Guide.

Visit the Unified EFI Forum for the latest specifications.

The EDK II project is hosted at http://tianocore.org.

Latest updates to SUSE* UEFI secure boot:
OpenSUSE tools UEFI:

http://download.opensuse.org/repositories/home:/jejb1:/UEFI/
http://build.opensuse.org/project/show/home:jejb1:UEFI

Related Articles/Whitepapers at tianocore.org:
- “A Tour Beyond BIOS into UEFI Secure Boot”
- Images with Multiple Signatures
<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>STTS001</td>
<td>Creating UEFI Solutions Optimized for Mobile Devices</td>
<td>11:00</td>
</tr>
<tr>
<td>STTS002</td>
<td>UEFI Secure Boot in Linux*</td>
<td>13:00</td>
</tr>
<tr>
<td>STTS003</td>
<td>Using UEFI for Secure Firmware Update of Expansion Cards</td>
<td>14:15</td>
</tr>
<tr>
<td>STTS004</td>
<td>Predicting Performance of Hadoop* and Data Center Clusters with Intel® CoFluent™ Studio</td>
<td>15:45</td>
</tr>
<tr>
<td>STTS005</td>
<td>Accelerating Software Development on Next Generation Intel® Architecture Microservers and Tablets with Wind River Simics*</td>
<td>17:00</td>
</tr>
</tbody>
</table>

See also
Technical Showcase Booths 408, 409, 410
“Intel® Device Protection Technology with Boot Guard - Secure Boot Policy Enforcement, booth #318”

✓ = DONE
Software Developers: Network & Have Fun!

Don’t miss out on some great IDF networking and social activities hosted by Intel Software & Services Group (SSG):

- **Day 1, Tuesday, Sept 10th, 7pm-10:30pm**
 - **Software Developer Networking Party**
 - Pick up your Software VIP lanyard at the Software and Services Pavilion Info Counter to get party access!

- **Day 2, Wednesday, Sept 11**
 - **SSG Inspiration Through Innovation Hour**
 - Location: Showcase Networking Plaza, 11am-12pm & 5pm-6pm
 - SSG/guests discuss how innovation has inspired their products
 - **Doug Fisher (Intel VP, GM SSG) Meet & Greet**
 - Software & Services Pavilion, 5-7pm

- Watch out for SSG Mobile lunch food and dessert carts outside Moscone throughout the conference
- Visit SSG Pavilion Showcase for great demos and games!
Additional Linux Resources

IDF 2012 – Developing UEFI Support for Linux*

For more information on Ubuntu* ...
Secure Boot Tools - git://kernel.ubuntu.com/jk/sbsigntool
https://github.com/vathpela/pesign

Summary of secure bootloaders
http://www.rodsbooks.com/efi-bootloaders/secureboot.html

Matthew Garrett http://mjg59.dreamwidth.org/
Shim https://github.com/mjg59/
Please Fill Out The Online Session Evaluation Form

Enter to win fabulous prizes!

You will receive an email with a link to the online session evaluation prior to the end of this session. Please submit the evaluation by 10am tomorrow to be entered to win.

Winners will be announced by email.

Sweepstakes rules are available at the Help Desk on Level 2.
All sessions evaluations must be submitted by Friday, September 13 at 5pm.
Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Intel, Look Inside and the Intel logo are trademarks of Intel Corporation in the United States and other countries.

*Other names and brands may be claimed as the property of others.
Copyright ©2013 Intel Corporation.
Risk Factors

The above statements and any others in this document that refer to plans and expectations for the third quarter, the year and the future are forward-looking statements that involve a number of risks and uncertainties. Words such as “anticipates,” “expects,” “intends,” “plans,” “believes,” “seeks,” “estimates,” “may,” “will,” “should” and their variations identify forward-looking statements. Statements that refer to or are based on projections, uncertain events or assumptions also identify forward-looking statements. Many factors could affect Intel’s actual results, and variances from Intel’s current expectations regarding such factors could cause actual results to differ materially from those expressed in these forward-looking statements. Intel presently considers the following to be the important factors that could cause actual results to differ materially from the company’s expectations.

Demand could be different from Intel’s expectations due to factors including changes in business and economic conditions; customer acceptance of Intel’s and competitors’ products; supply constraints and other disruptions affecting customers; changes in customer order patterns including order cancellations; and changes in the level of inventory at customers. Uncertainty in global economic and financial conditions poses a risk that consumers and businesses may defer purchases in response to negative financial events, which could negatively affect product demand and other related matters. Intel operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult to reduce in the short term and product demand that is highly variable and difficult to forecast. Revenue and the gross margin percentage are affected by the timing of Intel product introductions and the demand for and market acceptance of Intel’s products; actions taken by Intel’s competitors, including product offerings and introductions, marketing programs and pricing pressures and Intel’s response to such actions; and Intel’s ability to respond quickly to technological developments and to incorporate new features into its products. The gross margin percentage could vary significantly from expectations based on capacity utilization; variations in inventory valuation, including variations related to the timing of qualifying products for sale; changes in revenue levels; segment product mix; the timing and execution of the manufacturing ramp and associated costs; start-up costs; excess or obsolete inventory; changes in unit costs; defects or disruptions in the supply of materials or resources; product manufacturing quality/yields; and impairments of long-lived assets, including manufacturing, assembly/test and intangible assets. Intel’s results could be affected by adverse economic, social, political and physical/infrastructure conditions in countries where Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Expenses, particularly certain marketing and compensation expenses, as well as restructuring and asset impairment charges, vary depending on the level of demand for Intel’s products and the level of revenue and profits. Intel’s results could be affected by the timing of closing of acquisitions and divestitures. Intel’s results could be affected by adverse effects associated with product defects and errata (deviations from published specifications), and by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust, disclosure and other issues, such as the litigation and regulatory matters described in Intel’s SEC reports. An unfavorable ruling could include monetary damages or an injunction prohibiting Intel from manufacturing or selling one or more products, precluding particular business practices, impacting Intel’s ability to design its products, or requiring other remedies such as compulsory licensing of intellectual property. A detailed discussion of these and other factors that could affect Intel’s results is included in Intel’s SEC filings, including the company’s most recent reports on Form 10-Q, Form 10-K and earnings release.
Backup
Authenticated Variables (AT):
Small signed named data containers
• Managed, protected by the system BIOS
• Read by BIOS, OS.
• Modified by BIOS, OS only if signature verifies (or local user on Intel® Architecture platforms)

PK: Platform Key: AT containing OEM’s keys.
Party who can edit the KEK via s/w

KEK: Key Exchange Key: List of certificates of owners allowed to update white list (db), black list (dbx)

db: Authorization Database: AT containing authorized certs / hashes

dbx: Exclusion Database: AT containing excluded certs / hashes

Signed PE/COFF executables
• Op ROMs
• Boot loaders
• Applications
Authenticode signing format

Option ROM
OS Loader
Option ROM
The Full Solution

Signed Firmware Update 800-147

OS Secure Boot

UEFI Secure Boot

HDD

UEFI DXE Core / Dispatcher

Silicon initialization (SEC/PEI)

Hardware
- I/O
- Memory
- Network
- Graphics

OS Driver

OS Kernel

UEFI OS Loaders (SecondStageLoader.efi)

UEFI Boot Loaders (OSLoader1.efi, OSLoader2.efi, OSLoader3.efi)

Signed Firmware Update 800-147

End to end platform integrity