

White paper
Intel Platform Enabling Guide

Open Source UEFI Firmware Enabling Guide:
Intel Atom® Processor E3900 Series Platforms
August 2018

Intel provides an open source UEFI firmware project for the Intel Atom®
Processor E3900 Series platforms (formerly Apollo Lake SoC). This document
describes the architecture and boot flow of that firmware project.
See https://firmware.intel.com/projects/IntelAtomProcessorE3900.

Authors
David Wei

Vincent Zimmer

Mike Wu

Brian Richardson

Contents
Introduction ... 1

Firmware Project Overview 7

Firmware Boot Flow 12

Configuring the Intel® FSP 17

IA Processor Initialization Flow 23

Board Level Configuration 32

Enabling Verified Boot 37

Intended Audience
This enabling guide is intended for firmware
engineers, platform designers, and system
developers.

Prerequisites
• Users of this document should have prior

experience with firmware development using
UEFI & EDK II. This includes the UEFI
Specification and UEFI Platform Initialization
(PI) Specification, available at
uefi.org/specifications.

• Users should also be familiar with the Intel®
Firmware Support Package (Intel® FSP),
available at intel.com/fsp.

• This document assumes the audience has
experience with Intel® 64 and IA-32
Architectures.

https://firmware.intel.com/projects/IntelAtomProcessorE3900
http://uefi.org/specifications

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Introduction

Intel Corporation, August 2018 page 2

Acronyms and Terminology
Acronym /

Term
Definition

ACPI Advanced Configuration and Power Interface

API Application Programming Interface

Apollo Lake The pre-release code name for Intel Atom® Processor E3900 Series CPUs

BCT Binary Configuration Tool

BIOS Basic Input/Output System, a common term for the legacy Intel Architecture (IA) boot
firmware.

BPDT Boot Partition Description Table

BSF Boot Setting File

CAR Cache as RAM

CRB Customer Reference Board

CPU Central Processing Unit

CS Chip Select

DQ Data Input/Output

DRAM Dynamic Random Access Memory

DSDT Differentiated System Description Table

DTS Digital Thermal Sensor

DXE Driver Execution Environment

EDK II EDK II is a cross-platform firmware development environment for the UEFI and PI
specifications.

eMMC Embedded Multi-Media Controller

FDF Flash Description File

FIT Intel Flash Image Tool

FSP Intel® Firmware Support Package. See http://intel.com/fsp

FW Firmware

GPIO General Purpose Input-Output

HECI Host Embedded Controller Interface

HFM High Frequency Mode

HOB Hand-off Block

IA Intel Architecture

I2C Inter-Integrated Circuit

IBB Initial Boot Block

 IBBL Initial Boot Block Loader

 IFWI Integrated Firmware Image

IPU Image Processing Unit

LBP Logical Boot Partition

http://intel.com/fsp

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Introduction

Intel Corporation, August 2018 page 3

LFM Low Frequency Mode

MEU Manifest Extension Utility

NV Non-volatile Variables

OBB OEM Boot Block

OEM Original Equipment Manufacturer

OS Operating System

PCD Platform Configuration Database

PEI Pre-EFI Execution Environment

PMIC Power Management Integrated Circuit

PMC Power Management Controller

PPI PEI Module to PEI Module Interfaces

RAM Random Access Memory

SEC Security phase

SCI System Control Interrupt

SMBIOS System Management BIOS

SMI System Management Interrupt

SMIP Signed Master Image Profile

SMM System Management Mode

SoC System on a Chip

SPI Serial Peripheral Interface

SRAM Static Random Access Memory

SSDT Secondary System Description Tables

SVID Serial Voltage ID

TianoCore A community supporting an open source implementation of the UEFI specification

TPM Trusted Platform Module

TXE Intel® Trusted Execution Engine

UDK UEFI Development Kit

UEFI Unified Extensible Firmware Interface. See http://uefi.org

UPD Updatable Product Data

http://uefi.org/

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Introduction

Intel Corporation, August 2018 page 4

Related Documents and Tools
• Unified Extensible Firmware Interface (UEFI) Specification, Advanced Configuration and Power

Interface (ACPI) Specification, and Platform Initialization (PI) Specification:
http://www.uefi.org/specifications

• Intel® Pentium® and Celeron® Processor N- and J- Series Datasheet Volume 1 of 3
https://www.intel.com/content/www/us/en/processors/pentium/pentium-celeron-n-series-j-
series-datasheet-vol-1.html

• Intel® Pentium® and Celeron® Processor N- and J- Series Datasheet Volume 2 of 3
https://www.intel.com/content/www/us/en/processors/pentium/pentium-celeron-n-series-j-
series-datasheet-vol-2.html

• Intel® Pentium® and Celeron® Processor N- and J- Series Datasheet Volume 2 of 3
https://www.intel.com/content/www/us/en/processors/pentium/pentium-celeron-n-series-j-
series-datasheet-vol-3.html

• Intel Atom® Processor E3900 and A3900 Series Datasheet Addendum
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/atom-
processor-e3900-a3900-series-datasheet-addendum.pdf

• Intel® Firmware Support Package External Architecture Specification v2.0
http://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/fsp-
architecture-spec-v2.pdf

• Apollo Lake Intel® Firmware Support Package (FSP) Integration Guide
https://github.com/IntelFsp/FSP/blob/ApolloLake/ApolloLakeFspBinPkg/Docs/Apollo_Lake_FSP
_Integration_Guide.pdf

• Intel® 64 and IA-32 Architectures Software Developer’s Manual
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-
3abcd.pdf

Revision History

Date Description

August 2018 Initial document release.

http://www.uefi.org/specifications
https://www.intel.com/content/www/us/en/processors/pentium/pentium-celeron-n-series-j-series-datasheet-vol-1.html
https://www.intel.com/content/www/us/en/processors/pentium/pentium-celeron-n-series-j-series-datasheet-vol-1.html
https://www.intel.com/content/www/us/en/processors/pentium/pentium-celeron-n-series-j-series-datasheet-vol-2.html
https://www.intel.com/content/www/us/en/processors/pentium/pentium-celeron-n-series-j-series-datasheet-vol-2.html
https://www.intel.com/content/www/us/en/processors/pentium/pentium-celeron-n-series-j-series-datasheet-vol-3.html
https://www.intel.com/content/www/us/en/processors/pentium/pentium-celeron-n-series-j-series-datasheet-vol-3.html
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/atom-processor-e3900-a3900-series-datasheet-addendum.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/atom-processor-e3900-a3900-series-datasheet-addendum.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/fsp-architecture-spec-v2.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/fsp-architecture-spec-v2.pdf
https://github.com/IntelFsp/FSP/blob/ApolloLake/ApolloLakeFspBinPkg/Docs/Apollo_Lake_FSP_Integration_Guide.pdf
https://github.com/IntelFsp/FSP/blob/ApolloLake/ApolloLakeFspBinPkg/Docs/Apollo_Lake_FSP_Integration_Guide.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Introduction

Intel Corporation, August 2018 page 5

List of Tables
Table 1: SPI Flash Regions... 9

Table 2: Firmware Volumes in IA Firmware .. 16

Table 3: FSP API and Wrapper.. 20

Table 4: Intel FSP UPD Input ... 21

Table 5: FSP Platform Hooks... 21

Table 6: HOBs Produced by FSP .. 21

Table 7: Platform Porting Configuration Consideration.. 24

Table 8: SMM Foundation Modules.. 25

Table 9: SMM Extension Modules ... 25

Table 10: Platform Protocols Associated with SMM ... 26

Table 11: PPM Modules ... 26

Table 12: Power Features Controlled by FSPS_UPD .. 27

Table 13: ACPI Tables for Power Management... 28

Table 14: Thermal Control Registers ... 28

Table 15: Critical Memory Controller Signals .. 33

Table 16: Memory Rank Configuration ... 36

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Introduction

Intel Corporation, August 2018 page 6

List of Figures
Figure 1: SPI Flash Regions and Access Control .. 9

Figure 2: Logical Boot Partition Layout in IFWI ... 11

Figure 3: UEFI Variable Access via Intel TXE... 11

Figure 4: TXE Loads IBBL .. 12

Figure 5: TXE and Host Processor Load IBB ... 13

Figure 6: Shadow IBB to Permanent Memory DRAM .. 14

Figure 7: Load OBB into DRAM ... 15

Figure 8: Layout of Cache as RAM Region ... 18

Figure 9: IA Firmware and Intel FSP Boot Flow ... 22

Figure 10: Thermal Management Logical Flow ... 31

Figure 11: Board Specific Configuration... 32

Figure 12: Micron Single Die, Dual Channel Package ... 34

Figure 13: Memory Controller Channel .. 34

Figure 14: Micron Dual Die, Dual Channel Package ... 35

Figure 15: Memory Controller Channel .. 36

Figure 16: Firmware Boot Flow, Verified Boot Enabled ... 38

Figure 17: Intel TXE Keys, Owners, and Storage Locations ... 40

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Firmware Project Overview

Intel Corporation, August 2018 page 7

Firmware Project Overview
The EDK II open source firmware project for Intel Atom® Processor E3900 Series platforms combines
the following platform firmware components to form the Integrated Firmware Image (IFWI) stored in SPI
NOR on the motherboard:

• Intel Architecture (IA) Firmware for UEFI
• Intel® Trusted Execution Engine (Intel® TXE) firmware
• Power Management Controller (PMC) firmware
• Microcode and P-unit firmware

This section introduces the functions of IFWI components, and describes the layout of the SPI NOR
flash.

Firmware Components within IFWI
Some components of the IFWI contain code for platform level initialization, while others are for device
level initialization. The IFWI also contains regions for storing platform data.

Platform Firmware
Platform firmware components are mandatory code for platform initialization. They are responsible for
initializing power management controllers (PMC and P-unit), Intel TXE, and Intel Atom® Processor
E3900 Series CPUs.

Intel Trusted Execution Engine (TXE) Firmware

Intel TXE Firmware is the code executed by Intel TXE. It brings up TXE and exposes runtime security
services such as firmware TPM (fTPM) and Intel® Platform Protection Technology with Boot Guard. Boot
Guard in Intel TXE Firmware loads and authenticates other firmware components during boot.
IA Firmware communicates with Intel TXE firmware through HECI. This binary firmware is provided by
Intel and signed by Intel’s private key.

Intel Architecture (IA) Firmware

IA Firmware is executed by the host processor. It initializes the platform and loads the operating
system.
The open source IA firmware provided for Intel Atom® Processor E3900 Series CPUs follows the UEFI
Specification, revision 2.6. The codebase also leverages the Intel UEFI Development Kit 2018
(UDK2018), a stable release of the TianoCore EDK II project.
IA Firmware is divided into three execution stages:

1. Initial Boot Block Loader (IBBL)
First stage of IA Firmware, which executes in Static Random Access Memory (SRAM). Due to
the size limitation of SRAM, IBBL is only 4KB in size. From the perspective of UDK2018
architecture, IBBL only contains IA processor Resect Vector code and part of SEC stage code
of UEFI IA Firmware which are necessary to load IBB image into temporary memory (Cache
as RAM).

2. Initial Boot Block (IBB)
Second stage of IA Firmware, which executes from temporary memory (CAR). After DRAM
has been initialized and CAR is torn down, PEI Modules which register PPIs and PPI
notification callbacks have to be shadowed into DRAM and re-dispatched, during which

http://uefi.org/specifications
http://uefi.org/specifications

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Firmware Project Overview

Intel Corporation, August 2018 page 8

those PPIs and PPI notification callbacks will be re-installed.

From the perspective of UDK2018 architecture, IBB contains part of SEC stage code, pre-
memory PEI modules, and memory initialization code (FSP-M). IBB loads OBB into DRAM.

3. OEM Boot Block (OBB)
The third stage of IA Firmware which executes from DRAM. From the perspective of
UDK2018 architecture, OBB contains post-memory PEI modules, FSP-S, DXE stage and BDS
stage.

Besides the above three code regions for UEFI, there is a separate area in the Logical Data Region of SPI
flash for UEFI to store Non-volatile Variables (NV). IA Firmware does not access this region directly, but
can access it via HECI commands to Intel TXE.

Power Management Controller (PMC) Firmware

PMC firmware is provided by Intel and signed with Intel’s private key. It initializes the PMC to provide
the following functions:

• Conducting Warm/Cold/Global resets.

• Conducting system boot flow.

• Conducting Sleep states (S3, S4, and S5) entry.

• Collecting system wake events and conducting system wake from sleep states.

• Managing power rails.

• Handling System Management Interrupt (SMI).

• Handling System Control Interrupt (SCI).

• Communicating with external Power Management IC (PMIC) with SVID or I2C interface.

Microcode and P-Unit Firmware

Microcode and P-unit Firmware are released by Intel in a single signed binary, which is signed with
Intel’s private key.
The P-Unit manages power for IA cores, graphics engine (GT), and memory subsystem. It also
participates in reset flow and system sleep state transition.

SPI NOR Flash Layout
The platform supports up to two SPI flash devices. The SPI flash connected to Chip Select 0 is used for
storing firmware, and contains a valid SPI Flash Descriptor in the first 4KB of SPI NOR flash. The SPI
Flash Descriptor is a data structure that is programmed to the header region of the SPI flash part. The
SPI controller is aware of the data structure in the SPI Flash Descriptor region.
The SPI Flash Descriptor describes the flash layout, provides configuration parameters for the platform,
and enables the SoC to securely manage storage among multiple SPI masters.

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Firmware Project Overview

Intel Corporation, August 2018 page 9

SPI Flash Regions
The 4K byte SPI Flash Descriptor at the head of the SPI device splits the SPI flash into regions and
defines access control for each region.

• Flash Region registers in the Flash Descriptor Region Section are used to control the base
address and size limit of each region. Table 1 lists all the regions.

• Flash Master 1 (Host CPU/ BIOS) register and Flash Master 2 (Intel® TXE) register in the Flash
Descriptor Master Section control SPI master access. Table 1: SPI Flash Regions and Access
Control illustrates how these register control access to each region.

Table 1: SPI Flash Regions

SPI Flash Regions Content

SPI Flash Descriptor Region 4KB in size; Platform configuration parameters; Define flash layout; Define
flash region accessibility.

IFWI Region

(Logical Boot Partitions)

Contains various firmware components (IA Firmware, Intel TXE firmware,
PMC firmware, etc.).
IFWI region is divided into 2 Logical Boot Partitions (LBP), which are
defined by Boot Partition Description Table (BPDT).

Logical Data Region
Contains system non-volatile data managed by Intel TXE, including UEFI
NV Storage.

Figure 1: SPI Flash Regions and Access Control

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Firmware Project Overview

Intel Corporation, August 2018 page 10

IFWI Region
The IFWI region in SPI flash physically follows the SPI Flash Descriptor Region. It contains all platform
firmware components and device firmware components.
The IFWI region is divided into two Logical Boot Partitions, which are identical in size. The Logical Boot
Partition layout is defined by the Boot Partition Descriptor Table (BPDT) at the head of the Logical Boot
Partition.
Logical Boot Partition 1 and Logical Boot Partition 2 contain multiple entries, also referred to as sub-
partitions. These can be signed firmware components or a Secondary Boot Partition (“Secondary
BPDT”).

• BPDT: Boot Partition Descriptor Table
• SBPDT: Secondary BPDT, points to sub-partitions recursively
• OEM SMIP (Signed Master Image Profile)
• TXE Firmware
• IPU Firmware
• PMC Firmware
• CPU Microcode and p-Unit Firmware
• IA Firmware

o IBBL
o IBB
o OBB

• Misc. Device Firmware
• Security Data

o Boot Policy Manifest
o OEM Key Manifest

The open source UEFI project contains details for the BPDT and code for accessing entries inside
Logical Boot Partitions:
https://github.com/tianocore/edk2-platforms/tree/devel-
IntelAtomProcessorE3900/Silicon/BroxtonSoC/BroxtonSiPkg/Library/BpdtLib
Figure 2 is an example of Logical Boot Partition layout that could be used to illustrate the structure of
both Logical Boot Partition 1 and Logical Boot Partition 2.

https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Silicon/BroxtonSoC/BroxtonSiPkg/Library/BpdtLib
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Silicon/BroxtonSoC/BroxtonSiPkg/Library/BpdtLib

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Firmware Project Overview

Intel Corporation, August 2018 page 11

Figure 2: Logical Boot Partition Layout in IFWI

Logical Data Region
Logical Data Region on SPI flash is managed by TXE. UEFI Non-Volatile variables are stored in Logical
Data Region. UEFI/BIOS does not directly access this region, but reads and writes data there through the
HECI interface, as Figure 3 shows.

Figure 3: UEFI Variable Access via Intel TXE

Flash Image Tool (FIT)
The Intel Flash Image Tool (FIT) is a tool which can be used to configure the settings inside SPI Flash
Descriptor, to stitch firmware components together to form the IFWI region. Please contact your Intel
Representative to get the FIT tool.

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Firmware Boot Flow

Intel Corporation, August 2018 page 12

Firmware Boot Flow
On a typical IA platform, SPI NOR flash is mapped to the top of the host processor’s 4GB memory space.
The host processor reset vector starts code execution from an address decoded by SPI NOR flash, just
below 4GB.
On Intel Atom® Processor E3900 Series platforms, the SPI NOR flash is not directly mapped to the host
processor memory space at the beginning of boot. A segment of Shared Static RAM (SRAM), which is
shared by the host processor and Intel TXE, is mapped to the top of 4GB memory space. The
introduction of SRAM makes the boot flow of Intel Atom® Processor E3900 Series platforms different
from previous IA processors.
IA Firmware sends HECI messages via Intel TXE to request ownership of the SPI NOR flash. After the
host processor gets ownership of SPI NOR, the flash is mapped to the top 4GB of CPU memory space.
This maps IA firmware into three execution phases:

• IBBL is executed in Shared SRAM
• IBB is executed in temporary memory (Cache as RAM)
• OBB is executed in system DRAM

Pre- IA Firmware Stage
At system power-on, Intel TXE executes prior to giving control to the host processor:

1) Intel TXE loads firmware ingredients from SPI NOR flash to TXE SRAM and starts execution
from Intel TXE SRAM.

2) Intel TXE creates shared SRAM at top of the host processor’s 4GB memory address space. This
shared SRAM is accessible by both Intel TXE and the host IA processor, just as Figure 4 shows.

3) Intel TXE copies the IA Firmware IBBL and microcode from SPI NOR flash to the shared SRAM.
Figure 4 shows the loading process.

4) PMC brings the host processor out of reset.
5) Host processor loads microcode.
6) Host processor starts executing IA firmware IBBL from the host processor’s reset vector

(memory region mapped just below 4GB).

Figure 4: TXE Loads IBBL

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Firmware Boot Flow

Intel Corporation, August 2018 page 13

IBBL Stage
IBBL is the first stage of IA Firmware, executed from Shared SRAM. The IA processor starts fetching IBBL
code from the reset vector.

1) IBBL sets up Cache as RAM (CAR) as temporary memory.
2) IBBL requests Intel TXE load IBB from SPI Flash into shared SRAM.
3) IBBL copies IBB from SRAM to CAR area.
4) IBBL transfers control to IBB.

Figure 5 shows how IBB is loaded from SPI flash into Cache as RAM.

Figure 5: TXE and Host Processor Load IBB

IBB Stage
IBB is the second stage of IA Firmware, containing the PEI Core and Memory Reference Code (FSP-M).
Prior to system memory initialization, IBB resides in temporary memory (CAR).
After IBB completes system memory (DRAM) initialization, the following steps will be taken to disable
CAR and avoid data loss:

1) PEI Core shadows itself from CAR into DRAM, as Figure 6 shows.
2) PEI Core shadows any PEI Modules which have been dispatched and registered themselves with

PEI Service RegiserForShadow().
Note:

a) A PEI Module must register itself with RegiserForShadow() if it has any PPI produced. It
has to reinstall the PPIs it has installed previously. Otherwise after CAR is teared down,
those PPIs’ EFI_PEI_PPI_DESCRIPTOR and the PPI code, which was located in CAR, will
be unavailable. This could lead to system crash

b) PEI code that runs prior to PEI memory installation, which is handled by PEI Service
InstallPeiMemory (), cannot register any PPI notification with PeiNotifyPpi(). Otherwise
the EFI_PEIM_NOTIFY_ENTRY_POINT pointer in EFI_PEI_NOTIFY_DESCRIPTOR will still
point to code in CAR, which will be unavailable. Accessing this pointer will lead to
system crash.

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Firmware Boot Flow

Intel Corporation, August 2018 page 14

Figure 6: Shadow IBB to Permanent Memory DRAM

3) IBB issues a HECI message to TXE to request ownership of SPI NOR flash. After ownership is
granted, SPI NOR flash will be mapped to the top 4GB of host processor memory space. Host
processor could get data from SPI NOR flash by memory reading operation.

4) IA processor could also read and write SPI NOR flash through SPI protocol.
5) IBB reads OBB from SPI flash to system DRAM and gives control to OBB.

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Firmware Boot Flow

Intel Corporation, August 2018 page 15

Figure 7 illustrates the memory map after the host controller has acquired ownership of SPI flash.

Figure 7: Load OBB into DRAM

OBB Stage
OBB consists of post-memory PEI modules, FSP-S, DXE modules, and BDS of UEFI IA Firmware. These
modules initialize CPU, Chipset and platform:

• GPIO initialization
• Intel Chipset configuration
• Publish UEFI Services
• Multi-Processor initialization
• Initialize Graphics device and provide GOP service
• Initialize Storage devices
• Publish ACPI tables
• Logo display
• OEM specific customized features
• SMM initialization
• Network
• Console
• SMBIOS, TCG
• BIOS Setup

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Firmware Boot Flow

Intel Corporation, August 2018 page 16

UEFI IA Firmware Volumes in IBBL, IBB and OBB
The EDK II Flash Description File (FDF) determines how UEFI IA Firmware components are allocated
across IBBL, IBB and OBB. For details, please refer to the project’s FDF file and IFWI stitch file in
TianoCore GitHub:
https://github.com/tianocore/edk2-platforms/blob/devel-
IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/PlatformPkg.fdf
https://github.com/tianocore/edk2-platforms/blob/devel-
IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/Tools/Stitch/IFWIStitch_Simple.bat

Table 2: Firmware Volumes in IA Firmware

Boot Block Firmware Volumes

IBBL IBBL.Fv

IBB FVIBBM.Fv

FSP_M.fv

OBB FSP_S.fv

FVIBBR.fv

FVOBB.Fv

FVOBBX.Fv

FVOBBY.Fv

https://github.com/tianocore/edk2-platforms/blob/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/PlatformPkg.fdf
https://github.com/tianocore/edk2-platforms/blob/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/PlatformPkg.fdf
https://github.com/tianocore/edk2-platforms/blob/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/Tools/Stitch/IFWIStitch_Simple.bat
https://github.com/tianocore/edk2-platforms/blob/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/Tools/Stitch/IFWIStitch_Simple.bat

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Configuring the Intel® FSP

Intel Corporation, August 2018 page 17

Configuring the Intel® FSP
The Intel Firmware Support Package (Intel® FSP) is a binary package of initialization code for Intel
silicon. This package provides access to silicon initialization functions that are not available in open
source code or public documentation. This section described how to configure Intel FSP for Intel Atom®
Processor E3900 Series platforms.

Intel FSP Release Package and Related Tools
• The Intel FSP release package for Intel Atom® Processor E3900 Series platforms is available in

github: https://github.com/IntelFsp/FSP/tree/ApolloLake
• The release package contains a binary image (.fd) and configuration file (.bsf):

https://github.com/IntelFsp/FSP/tree/ApolloLake/ApolloLakeFspBinPkg/FspBin/Fsp.fd
https://github.com/IntelFsp/FSP/tree/ApolloLake/ApolloLakeFspBinPkg/FspBin/Fsp.bsf

• Intel FSP contains the platform Memory Reference Code, PEIM for the graphics controller, and
other Silicon Reference Code. Please refer to the release notes for more details:
https://github.com/IntelFsp/FSP/blob/ApolloLake/ApolloLakeFspBinPkg/Docs/Apollo_Lake_FSP
_MR5_Release_Notes.pdf

• The Intel FSP Binary Configuration Tool (BCT) is required to edit the configuration file:
https://github.com/IntelFsp/BCT

• The Intel FSP Binary Split Tool (SplitFspBin.py) is also required to divide the binary file into
smaller components: https://github.com/tianocore/edk2/tree/master/IntelFsp2Pkg/Tools

Common Parameters Controlled by Intel FSP
Each Intel FSP binary contains a configurable data region, the Updateable Product Data (UPD), which
will be used by the Intel FSP during initialization for SoC configuration.
Updateable Product Data (UPD) contains the default parameters for the FSP initialization. The UPD
parameters can also be statically customized using the Binary Configuration Tool (BCT) and Boot
Setting File (BSF), if a custom platform requires any different UPD parameters than the default ones.
The parameters of UPD are defined by the following head files:
https://github.com/IntelFsp/FSP/blob/ApolloLake/ApolloLakeFspBinPkg/Include/FspmUpd.h
https://github.com/IntelFsp/FSP/blob/ApolloLake/ApolloLakeFspBinPkg/Include/FspsUpd.h

Integrating Intel FSP into Open Source UEFI IA Firmware
The Intel FSP image consists of three different components (FSP-T, FSP-M and FSP-S), which can be
located at different base addresses according to the execution environment. The boot flow has three
different execution stages:

• Execution in Shared SRAM
• Execution in temporary memory (Cache as RAM)
• Execution in system memory (DRAM)

This boot flow requires that Intel FSP components be mapped into different execution stages of the
boot flow.

• FSP-T executes in Shared SRAM
• FSP-M executes in temporary memory. After memory is initialized, generic elements like the PEI

core and Intel FSP data will migrate to permanent memory
• FSP-S executes in system memory (DRAM)

https://github.com/IntelFsp/FSP/tree/ApolloLake
https://github.com/IntelFsp/FSP/tree/ApolloLake/ApolloLakeFspBinPkg/FspBin/Fsp.fd
https://github.com/IntelFsp/FSP/tree/ApolloLake/ApolloLakeFspBinPkg/FspBin/Fsp.bsf
https://github.com/IntelFsp/FSP/blob/ApolloLake/ApolloLakeFspBinPkg/Docs/Apollo_Lake_FSP_MR5_Release_Notes.pdf
https://github.com/IntelFsp/FSP/blob/ApolloLake/ApolloLakeFspBinPkg/Docs/Apollo_Lake_FSP_MR5_Release_Notes.pdf
https://github.com/IntelFsp/BCT
https://github.com/tianocore/edk2/tree/master/IntelFsp2Pkg/Tools
https://github.com/IntelFsp/FSP/blob/ApolloLake/ApolloLakeFspBinPkg/Include/FspmUpd.h
https://github.com/IntelFsp/FSP/blob/ApolloLake/ApolloLakeFspBinPkg/Include/FspsUpd.h

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Configuring the Intel® FSP

Intel Corporation, August 2018 page 18

FSP-T is not used by this project, because open source UEFI IA Firmware already covers the function of
FSP-T. So we will only discuss FSP-M and FSP-S in this paper.
The FSP-M firmware volume (FV) is integrated into IBB, and the FSP-S FV is integrated into OBB. Note:
FSP-T is not used in this firmware project.

Rebase FSP
The SplitFspBin.py utility is used to rebase the separate sections of Intel® FSP (FSP-T, FSP-M, FSP-
S). This section describes how the build process uses this utility.

Rebase FSP-M

FSP-M is part of IBB, which is executed from Cache as RAM (CAR). The layout of CAR is described in
Figure 8, from which we could calculate out the runtime base address of FSP-M. The pre-build script
rebases FSP-M to the runtime address within CAR:
https://github.com/tianocore/edk2-platforms/blob/devel-
IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/BuildBxtBios.bat

::0xFEF7A000 = gIntelFsp2WrapperTokenSpaceGuid.PcdFlashFvFspBase =
::$(CAR_BASE_ADDRESS) + $(BLD_RAM_DATA_SIZE) + $(FSP_RAM_DATA_SIZE) +
::$(FSP_EMP_DATA_SIZE) + $(BLD_IBBM_SIZE)
Python %WORKSPACE%\Core\IntelFsp2Pkg\Tools\SplitFspBin.py rebase -f Fsp.fd -c
m -b 0xFEF7A000 -o .\ -n ApolloLakeFsp.fd

Figure 8: Layout of Cache as RAM Region

https://github.com/tianocore/edk2-platforms/blob/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/BuildBxtBios.bat
https://github.com/tianocore/edk2-platforms/blob/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/BuildBxtBios.bat

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Configuring the Intel® FSP

Intel Corporation, August 2018 page 19

Rebase FSP-S

The default base address for FSP-S is set to 0x0200000. This codebase does not rebase FSP-S at build
time, so the UEFI IA Firmware will shadow the FSP-S FV to 0x0200000 at runtime before calling the
FSP-S API.
Please refer to the following code for FSP-S shadowing during boot:
https://github.com/tianocore/edk2-platforms/blob/devel-
IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/PlatformSettings/PlatformPreMemPe
i/FvCallback.c

 //
 // Copy to FSP-S to preferred base. The preferred base is defined in FSP
 // Integration Guide.
 // This region must be reserved for BIOS S3 resume.
 //
 BuildMemoryAllocationHob (
 (EFI_PHYSICAL_ADDRESS)FspSImageBase,
 (UINT64)FspHeader->ImageSize,
 EfiReservedMemoryType
);
 CopyMemSse4 ((VOID*) FspSImageBase, FvHeader, (UINT32) FvHeader->FvLength);
 PcdSet32S (PcdFspsBaseAddress, (UINT32) FspSImageBase);

Split FSP FD File
After rebasing, the Intel FSP FD file will be split into three FV files (FSP_T.fv, FSP_M.fv FSP_S.fv)
by invoking SplitFspBin.py in the build script file:
https://github.com/tianocore/edk2-platforms/blob/devel-
IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/BuildBxtBios.bat

python %WORKSPACE%\Core\IntelFsp2Pkg\Tools\SplitFspBin.py split -f Fsp.fd -o
.\ -n FSP.Fv

Integrate Intel FSP FV files into UEFI IA Firmware
The firmware build invokes a stitching process to integrate the FSP-M FV file into IBB, and the FSP-S FV
file into OBB:
https://github.com/tianocore/edk2-platforms/blob/devel-
IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/Tools/Stitch/IFWIStitch_Simple.bat

Add Intel FSP Wrapper Modules into UEFI IA Firmware
The Intel FSP Architecture Specification 2.0 defines five standard APIs which abstract major silicon
initialization functions. Please refer to Section 8 (FSP Interface) of the Intel FSP Architecture
Specification 2.0 for details.
To facility the usage of these APIs, UDK2018 provides several wrapper modules. UEFI IA Firmware
developers only need to add “FSP Wrapper” modules, as described in Table 3, instead of creating
custom code to trigger the relevant APIs.

https://github.com/tianocore/edk2-platforms/blob/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/PlatformSettings/PlatformPreMemPei/FvCallback.c
https://github.com/tianocore/edk2-platforms/blob/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/PlatformSettings/PlatformPreMemPei/FvCallback.c
https://github.com/tianocore/edk2-platforms/blob/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/PlatformSettings/PlatformPreMemPei/FvCallback.c
https://github.com/tianocore/edk2-platforms/blob/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/BuildBxtBios.bat
https://github.com/tianocore/edk2-platforms/blob/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/BuildBxtBios.bat
https://github.com/tianocore/edk2-platforms/blob/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/Tools/Stitch/IFWIStitch_Simple.bat
https://github.com/tianocore/edk2-platforms/blob/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/Tools/Stitch/IFWIStitch_Simple.bat

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Configuring the Intel® FSP

Intel Corporation, August 2018 page 20

Table 3: FSP API and Wrapper

FSP API Exposed By Related Wrapper Module in IA Firmware

TempRamInit FSP-T Not used by this firmware project.

FspMemoryInit FSP-M Called by FspmWrapperPeim.

https://github.com/tianocore/edk2-
platforms/tree/devel-
IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg
/Common/SampleCode/IntelFsp2WrapperPkg/FspmWra
pperPeim

TempRamExit FSP-M Called by FspmWrapperPeim.

https://github.com/tianocore/edk2-
platforms/tree/devel-
IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg
/Common/SampleCode/IntelFsp2WrapperPkg/FspmWra
pperPeim

FspSiliconInit FSP-S Called by FspsWrapperPeim.

https://github.com/tianocore/edk2-
platforms/tree/devel-
IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg
/Common/SampleCode/IntelFsp2WrapperPkg/FspsWrap
perPeim

NotifyPhaseApi FSP-S Called by FspNotifyDxe.

https://github.com/tianocore/edk2-
platforms/tree/devel-
IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg
/Common/SampleCode/IntelFsp2WrapperPkg/FspNotify
Dxe

Customize Intel FSP Configuration Data at Boot Time
Each Intel FSP module contains a configurable data region which will be used by the FSP during
initialization. This configuration region is a data structure called the Updateable Product Data (UPD),
which contains parameters for controlling Intel FSP initialization.
UPD data can be dynamically overridden by UEFI IA Firmware during boot time.
The following code defines Intel FSP UPD data structures:
https://github.com/IntelFsp/FSP/blob/ApolloLake/ApolloLakeFspBinPkg/Include
One of the major jobs of the Intel FSP Wrapper is to customize UPD parameters. The
FspWrapperPlatformLib provides platform hooks to update UPD:
https://github.com/tianocore/edk2/tree/master/IntelFsp2WrapperPkg/Library/BaseFspWrapperPlatfor
mLibSample
Typically, the UEFI IA Firmware Setup interface exposes options for user configuration. The Intel FSP
Wrapper obtains settings from Setup variable and uses those settings to configure UPD. Table 4 lists
the FSP APIs and corresponding UPD update code.

https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/SampleCode/IntelFsp2WrapperPkg/FspmWrapperPeim
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/SampleCode/IntelFsp2WrapperPkg/FspmWrapperPeim
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/SampleCode/IntelFsp2WrapperPkg/FspmWrapperPeim
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/SampleCode/IntelFsp2WrapperPkg/FspmWrapperPeim
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/SampleCode/IntelFsp2WrapperPkg/FspmWrapperPeim
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/SampleCode/IntelFsp2WrapperPkg/FspmWrapperPeim
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/SampleCode/IntelFsp2WrapperPkg/FspmWrapperPeim
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/SampleCode/IntelFsp2WrapperPkg/FspmWrapperPeim
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/SampleCode/IntelFsp2WrapperPkg/FspmWrapperPeim
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/SampleCode/IntelFsp2WrapperPkg/FspmWrapperPeim
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/SampleCode/IntelFsp2WrapperPkg/FspsWrapperPeim
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/SampleCode/IntelFsp2WrapperPkg/FspsWrapperPeim
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/SampleCode/IntelFsp2WrapperPkg/FspsWrapperPeim
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/SampleCode/IntelFsp2WrapperPkg/FspsWrapperPeim
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/SampleCode/IntelFsp2WrapperPkg/FspsWrapperPeim
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/SampleCode/IntelFsp2WrapperPkg/FspNotifyDxe
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/SampleCode/IntelFsp2WrapperPkg/FspNotifyDxe
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/SampleCode/IntelFsp2WrapperPkg/FspNotifyDxe
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/SampleCode/IntelFsp2WrapperPkg/FspNotifyDxe
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/SampleCode/IntelFsp2WrapperPkg/FspNotifyDxe
https://github.com/IntelFsp/FSP/blob/ApolloLake/ApolloLakeFspBinPkg/Include
https://github.com/tianocore/edk2/tree/master/IntelFsp2WrapperPkg/Library/BaseFspWrapperPlatformLibSample
https://github.com/tianocore/edk2/tree/master/IntelFsp2WrapperPkg/Library/BaseFspWrapperPlatformLibSample

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Configuring the Intel® FSP

Intel Corporation, August 2018 page 21

Table 4: Intel FSP UPD Input

FSP API UPD Updated by Platform Lib of
Intel FSP Wrapper

Wrapper Module

FspMemoryInit FSPM_UPD
(FspmUpd.h)

UpdateFspmUpdData()
FspWrapperPlatformLib

FspmWrapperPeim

FspSiliconInit FSPS_UPD
(FspsUpd.h)

UpdateFspsUpdData()
FspWrapperPlatformLib

FspsWrapperPeim

Extract Intel FSP Output (HOB)
Intel FSP builds a series of Hand-Off-Blocks (HOBs) as it progresses through silicon initializing. The Intel
FSP API returns the HOB list at the end of execution. IA Firmware can extract preferred HOBs and add
them to its own HOB list.
The FspWrapperHobProcessLib provides platform hooks, as Table 5 and 6 list, for the Intel FSP
Wrapper Module to extract preferred HOBs produced by FSP.

https://github.com/tianocore/edk2/tree/master/IntelFsp2WrapperPkg/Library/PeiFspWr
apperHobProcessLibSample

Table 5: FSP Platform Hooks

FSP API UPD Platform Hook of Intel FSP Wrapper Wrapper Module

FspMemoryInit FSPM_UPD
(FspmUpd.h)

PostFspmHobProcess ()
FspWrapperHobProcessLib

FspmWrapperPeim

FspSiliconInit FSPS_UPD
(FspsUpd.h)

PostFspsHobProcess ()
FspWrapperHobProcessLib

FspsWrapperPeim

Table 6: HOBs Produced by FSP

Platform Hook HOBs extracted

PostFspmHobProcess ()

EFI_HOB_TYPE_RESOURCE_DESCRIPTOR EFI_RESOURCE_SYSTEM_MEMORY

EFI_HOB_TYPE_RESOURCE_DESCRIPTOR EFI_RESOURCE_MEMORY_RESERVED

PostFspsHobProcess ()

EFI_HOB_TYPE_GUID_EXTENSION gScDeviceTableHobGuid

EFI_HOB_TYPE_GUID_EXTENSION gFspNonVolatileStorageHobGuid

EFI_HOB_TYPE_GUID_EXTENSION gPeiAcpiCpuDataGuid

EFI_HOB_TYPE_GUID_EXTENSION gEfiSmmPeiSmramMemoryReserveGuid

EFI_HOB_TYPE_GUID_EXTENSION gCpuInitDataHobGuid

EFI_HOB_TYPE_GUID_EXTENSION gSmbiosProcessorInfoHobGuid

EFI_HOB_TYPE_GUID_EXTENSION gEfiGraphicsInfoHobGuid

https://github.com/tianocore/edk2/tree/master/IntelFsp2WrapperPkg/Library/PeiFspWrapperHobProcessLibSample
https://github.com/tianocore/edk2/tree/master/IntelFsp2WrapperPkg/Library/PeiFspWrapperHobProcessLibSample

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Configuring the Intel® FSP

Intel Corporation, August 2018 page 22

Boot Flow from the Viewpoint of Intel FSP
Figure 9 illustrates the boot flow of UEFI IA Firmware and the timing of FSP Wrapper interacting with
Intel FSP.

Figure 9: IA Firmware and Intel FSP Boot Flow

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series IA Processor Initialization Flow

Intel Corporation, August 2018 page 23

IA Processor Initialization Flow
Intel Architecture (IA) Processor initialization requirements are documented in the “Intel® 64 and IA-32
Architectures Software Developer’s Manuals”. These manuals are applicable to Intel Atom® Processor
E3900 Series CPUs.

High Level Flow for IA Processor Initialization

Reset Vector
Code Sample: https://github.com/tianocore/edk2-platforms/tree/devel-
IntelAtomProcessorE3900/Silicon/BroxtonSoC/BroxtonSiPkg/Cpu/ResetVector/Vtf0

IA Processor Configuration:

• BSP execute code from Reset Vector.
• BSP enters 16bit real mode.
• IA Firmware sets BSP to protect mode, initialize processor Non-Eviction Mode (NEM) and setup

Cache as RAM.

PEI Stage IA Processor Initialization
After IA Firmware has finished initializing DRAM, IA Firmware disables processor Non-Eviction Mode
(NEM), sets MTRR registers and enables cache for BSP according to platform configuration. This is done
by the FSP-M Wrapper calling FSP API TempRamExit.
Code Sample: https://github.com/tianocore/edk2-platforms/tree/devel-
IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/SampleCode/IntelFsp2WrapperPkg/
FspmWrapperPeim

TempRamExitParam = GetTempRamExitParam ();
TimeStampCounterStart = AsmReadTsc ();
PERF_START_EX (&gFspApiPerformanceGuid, "EventRec", NULL, 0, 0xB000);
Status = CallTempRamExit (TempRamExitParam);
PERF_END_EX (&gFspApiPerformanceGuid, "EventRec", NULL, 0, 0xB07F);

IA Processor PEI to DXE Handoff
During the PEI stage, the IA processor runs in 32-bit protected mode. The DXE stage may execute in 64-
bit or 32-bit mode. If DXE executes 64-bit code, the IA processor will switch to 64-bit IA-32e mode at
the end of PEI.
Handoff Code:
https://github.com/tianocore/edk2/blob/UDK2018/MdeModulePkg/Core/DxeIplPeim/Ia32/DxeLoadFu
nc.c
The firmware developer must verify the following PCD setting:

Indicates if DxeIpl should switch to long mode to enter DXE phase.
It is assumed that 64-bit DxeCore is built in firmware if it is true;
otherwise 32-bit DxeCore
is built in firmware.

https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Silicon/BroxtonSoC/BroxtonSiPkg/Cpu/ResetVector/Vtf0
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Silicon/BroxtonSoC/BroxtonSiPkg/Cpu/ResetVector/Vtf0
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/SampleCode/IntelFsp2WrapperPkg/FspmWrapperPeim
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/SampleCode/IntelFsp2WrapperPkg/FspmWrapperPeim
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/SampleCode/IntelFsp2WrapperPkg/FspmWrapperPeim
https://github.com/tianocore/edk2/blob/UDK2018/MdeModulePkg/Core/DxeIplPeim/Ia32/DxeLoadFunc.c
https://github.com/tianocore/edk2/blob/UDK2018/MdeModulePkg/Core/DxeIplPeim/Ia32/DxeLoadFunc.c

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series IA Processor Initialization Flow

Intel Corporation, August 2018 page 24

TRUE - DxeIpl will load a 64-bit DxeCore and switch to long mode to hand
over to DxeCore.
FALSE - DxeIpl will load a 32-bit DxeCore and perform stack switch to hand
over to DxeCore.s
@Prompt DxeIpl switch to long mode.

gEfiMdeModulePkgTokenSpaceGuid.PcdDxeIplSwitchToLongMode|TRUE|BOOLEAN|0x00010
03b

DXE Stage IA Processor Initialization
Multi-Processor Initialization

Multi-processor initialization is primarily done by the CpuDxe module and MpInitLib.
https://github.com/tianocore/edk2/tree/UDK2018/UefiCpuPkg/CpuDxe
https://github.com/tianocore/edk2/tree/UDK2018/UefiCpuPkg/Library/MpInitLib

• Initialize floating point unit.
• Create new GDT table for DXE stage and load new segment selectors based on new GDT.
• Initialize Interrupt Descriptor Table for interrupt handling. Initializes all CPU interrupt and

exceptions entries and provides the default interrupt and exception handlers.
• Produce EFI_CPU_ARCH_PROTOCOL.
• Multi-processor initialization:

 Enable the local APIC for Virtual Wire Mode.
 Setup AP wakeup buffer.
 Wakeup AP to do basic AP feature initialization.
 Install EFI_MP_SERVICES_PROTOCOL.

Table 7 lists the PCDs that needs to be reviewed for specific platform.

Table 7: Platform Porting Configuration Consideration

PCD Description
gUefiCpuPkgTokenSpaceGuid.PcdCpuApStackSize Configure stack size for Application

Processor (AP).
gUefiCpuPkgTokenSpaceGuid.PcdCpuApLoopMode Specifies the AP wait loop state during

POST phase. The value is defined as below

1: Place AP in the Hlt-Loop state.

2: Place AP in the Mwait-Loop state.

3: Place AP in the Run-Loop state.
gUefiCpuPkgTokenSpaceGuid.PcdCpuApTargetCstate Specifies the AP target C-state for Mwait

during POST phase.

System Management Mode (SMM)

UEFI SMM modules listed in Table 8 implement SMM foundations and extensions defined by the
Platform Initialization Specification, Volume 4: Management Mode Core Interface”.

https://github.com/tianocore/edk2/tree/UDK2018/UefiCpuPkg/CpuDxe
https://github.com/tianocore/edk2/tree/UDK2018/UefiCpuPkg/Library/MpInitLib
http://uefi.org/specifications

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series IA Processor Initialization Flow

Intel Corporation, August 2018 page 25

Table 8: SMM Foundation Modules

SMM Foundation File Path Description

SMM Access

$(PLATFORM_SI_PACKAGE)/Cpu/SmmAcc
ess/Dxe/SmmAccess.inf

Platform Specific driver which Controls
access to SMRAM regions. Produces
EFI_SMM_ACCESS2_PROTOCOL.

SMM Control

$(PLATFORM_SI_PACKAGE)/SouthClust
er/SmmControl/RuntimeDxe/SmmContr
ol.inf

Platform specific driver which produces
EFI_SMM_CONTROL2_PROTOCOL for
software SMI triggering.

PI SMM IPL MdeModulePkg/Core/PiSmmCore/PiSmm
Ipl.inf

Load SMM Core into SMRAM, register
SMM Core entry point for SMIs, install
SMM Base 2 Protocol and SMM
Communication Protocol, and register
for the critical events required to
coordinate between DXE and SMM
environments.

PI SMM Core MdeModulePkg/Core/PiSmmCore/PiSmm
Core.inf

Reload SMM Core into SMRAM and
register SMM Core EntryPoint on the
SMI vector.

PI SMM CPU UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCp
uDxeSmm.inf

Setup SMRAM region for the CPU save
state and code for the SMI entry point of
each logical thread. Relocate SMM Base
of each thread from default 0x38000 to
preferred SMRAM.

CPU IO SMM UefiCpuPkg/CpuIo2Smm/CpuIo2Smm.in
f

UEFI IA Firmware also provides extensions to facilitate the SMI handler registration, as described in
Table 9.

Table 9: SMM Extension Modules

SMM Extension File Path Description

South Cluster SMI
Dispatcher

$(PLATFORM_SI_PACKAGE)/SouthClust
er/ScSmiDispatcher/Smm/ScSmiDispa
tcher.inf

Platform specific driver which produces
a bunch of SMM Child Dispatch
Protocols defined by VOLUME 4:
Platform Initialization Specification -
System Management Mode Core
Interface

PI SMM
Communication

UefiCpuPkg/PiSmmCommunication/PiS
mmCommunicationSmm.inf

Produces
EFI_SMM_COMMUNICATION_PROTOCOL
which provides a means of
communicating between drivers outside
of SMM and SMI handlers inside of
SMM.

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series IA Processor Initialization Flow

Intel Corporation, August 2018 page 26

The SMM foundation also hooks callback functions on DXE protocols. UEFI IA Firmware must ensure
the protocols listed in Table 10 are properly installed.

Table 10: Platform Protocols Associated with SMM

Required Platform Event Description

gEfiDxeSmmReadyToLockProtocolGuid This protocol is a mandatory protocol published by a DXE driver
prior to invoke the
EFI_SMM_ACCESS2_PROTOCOL.Lock() function to lock SMM

gEfiEndOfDxeEventGroupGuid This protocol is a mandatory protocol published by the PI platform
code prior to invoking any 3rd-party content, including options
ROM’s and UEFI executables that are not from the platform
manufacturer.

Processor Power Management (PPM)
Processor Power Management is implemented by Intel FSP, PowerMgmtDxe and CpuAcpiTables. It
manages processor performance state (P-State) and processor sleep state (C-State). Table 11 lists the
PPM modules.

Table 11: PPM Modules

Module File Path

Intel FSP https://github.com/IntelFsp/FSP/tree/ApolloLake

PowerMgmtDxe $(PLATFORM_SI_PACKAGE)/Cpu/PowerManagement/Dxe/PowerMgmtDxe.inf

CpuAcpiTables $(PLATFORM_SI_PACKAGE)/Cpu/AcpiTables/CpuAcpiTables.inf

Power Management Initialization
Intel FSP code related to power management is triggered by FspSiliconInit API, which uses
FSPS_UPD parameters to initialize power management features. Please refer to Table 12 for the power
management features controlled by FSPS_UPD.

https://github.com/IntelFsp/FSP/tree/ApolloLake

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series IA Processor Initialization Flow

Intel Corporation, August 2018 page 27

Table 12: Power Features Controlled by FSPS_UPD

FSP-S UPD Description

Eist Enable or Disable Intel SpeedStep Technology. 0:Disable(Default), 1:Enable.

BootPState Boot P-State with HFM or LFM. 0:HFM(Default), 1:LFM.

EnableCx Enable or Disable Enhanced C-states. 0:Disable(Default), 1:Enable.

C1e Enable or Disable Enhanced C1 state. 0:Disable(Default), 1:Enable.

BiProcHot Enable or Disable Bi-Directional PROCHOT#. 0:Disable, 1:Enable(Default).

PkgCStateLimit Max Pkg C state. 0:PkgC0C1, 1:PkgC2, 2:PkgC3(Default), 3:PkgC6, 4:PkgC7, 5:PkgC7s,
6:PkgC8, 7:PkgC9, 8:PkgC10, 9:PkgCMax, 254:PkgCpuDefault, 255:PkgAuto.

CStateAutoDemotion
C-State Auto Demotion. 0:Disable(Default) C1 and C3 Auto-demotion, 1:Enable
C3/C6/C7 Auto-demotion to C1, 2:Enable C6/C7 Auto-demotion to C3, 3:Enable
C6/C7 Auto-demotion to C1 and C3.

MaxCoreCState Max Core C-State. 0:Unlimited, 1:C1, 2:C3, 3:C6, 4:C7, 5:C8, 6:C9, 7:C10,
8:CCx(Default).

PkgCStateDemotion Enable or Disable Package Cstate Demotion. 0:Disable(Default), 1:Enable.

TurboMode Enable or Disable long duration Turbo Mode. 0:Disable, 1:Enable(Default).

Power Management Features Reporting
The CpuAcpiTables module contains ACPI SSDT tables for EIST, C State and T State. The
FspSiliconInit API returns CPU_INIT_DATA_HOB, which contains FVID table and the
CPU_GLOBAL_NVS_AREA pointer. This data is used by the PowerMgmtDxe driver to update power
management elements of SSDT of CpuAcpiTables. Table 13 lists the ACPI tables which report power
management features to the OS.
https://github.com/tianocore/edk2-platforms/tree/devel-
IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/Acpi/AcpiTablesPCAT

typedef struct {
 UINT32 Revision;
 EFI_PHYSICAL_ADDRESS CpuConfig;
 EFI_PHYSICAL_ADDRESS PowerMgmtConfig;
 EFI_PHYSICAL_ADDRESS SoftwareGuardConfig;
 EFI_PHYSICAL_ADDRESS CpuGnvsPointer;
 EFI_PHYSICAL_ADDRESS MpData;
 EFI_PHYSICAL_ADDRESS FvidTable;
 UINT32 SiliconInfo;
} CPU_INIT_DATA_HOB;

https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/Acpi/AcpiTablesPCAT
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/Acpi/AcpiTablesPCAT

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series IA Processor Initialization Flow

Intel Corporation, August 2018 page 28

Table 13: ACPI Tables for Power Management

Table to Be Updated Description

FADT C3 Latency for C3 enabling

SSDT “Cpu0Ist” Patch the native _PSS (Processor Supported States) package
with the EIST values from CPU_INIT_DATA_HOB.FvidTable

SSDT “CpuSsdt” Processor scope ACPI PPM GlobalNvs NVS Region with data
from CPU_INIT_DATA_HOB.CpuGnvsPointer

Processor Digital Thermal Sensor (DTS) for Thermal Reporting

An Intel Atom® Processor E3900 Series CPU has a digital thermal sensor (DTS) in each core. These
thermal sensors provide a means for periodically monitoring the thermal characteristics of each CPU
core. The die temperature read from each sensor is compared against a programmable threshold. If any
of the thresholds are exceeded, various actions can be triggered (interrupts, clock-throttling, P state
transitions, or I/O pin signaling).
This section introduces the core level interrupt mechanism of the digital thermal sensor. Package level
thermal interrupts are implemented with similar code logic.

Register Interfaces
Table 14 list the registers that are involved in implementing DTS function.

Table 14: Thermal Control Registers

Register Description

IA32_THERM_STATUS
(MSR 0x19C, Core Level)

The status of the temperature sensor. It also indicates the
temperature of digital thermal sensor.

IA32_THERM_INTERRUPT
(MSR 0x19B, Core Level)

Program the thermal thresholds for SMI interrupt generation.

LOCAL_APIC_THERMAL_DEF
 (MMIO 0xFEE00330, Core Level)

Enable thermal SMI interrupt of a core.

SWGPE_EN bit of GPE0a_EN Software GPE Enable bit of PMC General Purpose Event 0 Enable
Register. This bit enables the SW GPE function. If SWGPE_STS,
SWGPE_EN, and SCI_EN are all ones, an SCI will be generated.

SWGPE_STS bit of GPE0a_STS Software GPE Status bit of PMC General Purpose Event 0 Status
Register. This bit indicate the assertion of SWGPE event. If
SWGPE_STS, SWGPE_EN, and SCI_EN are all ones, an SCI will be
generated.

SWGPE_CTRL bit of GPE_CTRL Software General Purpose Event Control bit of PMC General Purpose
Event Control. Programming one to this bit will assert the SW GPE
event.

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series IA Processor Initialization Flow

Intel Corporation, August 2018 page 29

UEFI SMM Driver for DTS
https://github.com/tianocore/edk2-platforms/tree/devel-
IntelAtomProcessorE3900/Silicon/BroxtonSoC/BroxtonSiPkg/Cpu/PowerManagement/Smm
This driver enables DTS, initializes DTS interrupt thresholds, and registers a SMI handler for the DTS
SMI. The thermal interrupt SMI handler performs the following functions:

 Reads processor core temperatures

 Fills in corresponding global variables:

o GLOBAL_NVS_AREA.BspDigitalThermalSensorTemperature

o GLOBAL_NVS_AREA.ApDigitalThermalSensorTemperature

 Updates thermal thresholds (IA32_THERM_INTERRUPT) based on current core temperature for
further thermal SMI generation

 Asserts Software General Purpose Event (SCI interrupt) to notify OS Power Management
(OSPM)

Platform ACPI Table
Several data structures and devices are required in ACPI DSDT to support thermal zones.
See https://github.com/tianocore/edk2-platforms/tree/devel-
IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/Acpi/AcpiTablesPCA

Global NVS Memory Operation Region

OperationRegion (GNVS, SystemMemory, 0x00000000, 0xAA55)
Field (GNVS, AnyAcc, Lock, Preserve)
{
 …
 DTS1, 8, // (06) Digital Thermal Sensor 1 Reading
 DTS2, 8, // (07) Digital Thermal Sensor 2 Reading
 …
}

This code example maps to the global data structure (GLOBAL_NVS_AREA), while DTS1 and DTS2 point
to BspDigitalThermalSensorTemperature and ApDigitalThermalSensorTemperature
respectively.
The DTS SMI handler reads the current core temperatures from DTS and updates these fields. The ACPI
thermal zone method _TZ._TMP consumes these temperature values.

Thermal Zone in ACPI DSDT

The thermal zone method _TZ._TMP reports the higher value of GNVS.DTS1 and GNVS.DTS2 to
OSPM as current system temperature.
See https://github.com/tianocore/edk2-platforms/blob/devel-
IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/Acpi/AcpiTablesPCAT/THERMAL.A
SL

https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Silicon/BroxtonSoC/BroxtonSiPkg/Cpu/PowerManagement/Smm
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Silicon/BroxtonSoC/BroxtonSiPkg/Cpu/PowerManagement/Smm
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/Acpi/AcpiTablesPCA
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/Acpi/AcpiTablesPCA

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series IA Processor Initialization Flow

Intel Corporation, August 2018 page 30

Scope (_TZ)
{
 // Thermal Zone 1 = DTS Thermal Zone.
 ThermalZone (TZ01)
 {
 ...
 Method (_TMP,0,Serialized)
 {
 If (DTSE) {
 //
 // If DTS support is enabled, simply return the higher of the two
 // DTS Temperatures.
 //
 If (LGreaterEqual (DTS1, DTS2)) {
 Return (Add(2732, Multiply(DTS1, 10)))
 }
 Return(Add(2732, Multiply(DTS2, 10)))
 }
 ...
 } // End of _TMP
 ...
 }// end ThermalZone(TZ01)
} // end Scope(_TZ)

General Purpose Event in ACPI DSDT

General purpose event handler _GPE._L02 corresponds to the SCI asserted by the DTS thermal SMI
handler. This handler notifies OSPM that a thermal event has been triggered. OSPM then can read the
temperature via _TZ._TMP and handle the corresponding event.
See https://github.com/tianocore/edk2-platforms/blob/devel-
IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Common/Acpi/AcpiTablesPCAT/Gpe.asl

Scope (_GPE)
{
 //
 // Software GPE caused the event.
 //
 Method (_L02)
 {
 // Clear GPE status bit.
 Store (0,GPEC)
 //
 // Handle DTS Thermal Events.
 //
 External(DTSE, IntObj)

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series IA Processor Initialization Flow

Intel Corporation, August 2018 page 31

If(CondRefOf(DTSE))
 {
 If (LGreaterEqual (DTSE, 0x01))
 {
 Notify (_TZ.TZ01,0x80)
 }
 }
 }

Thermal Management Logic Flow
UEFI IA Firmware initializes the high and low thermal thresholds, and registers for the SMI thermal
interrupt handler, which is triggered when a threshold is exceeded. The thermal SMI handler performs
the following tasks:

 Reads core temperatures
 Fills into corresponding global variables for ACPI Thermal Zone

o GLOBAL_NVS_AREA.BspDigitalThermalSensorTemperature
o GLOBAL_NVS_AREA.ApDigitalThermalSensorTemperature

 Signals a Software General Purpose event (SCI interrupt) to notify OSPM that a thermal event
has occurred

 Calculates new thermal thresholds based on current temperature, and updates threshold
registers

Figure 10 illustrates the thermal management logical flow.

Figure 10: Thermal Management Logical Flow

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Board Level Configuration

Intel Corporation, August 2018 page 32

Board Level Configuration

Board Specific Configuration
Board specific configuration files are located in the “Board” sub-folder:
https://github.com/tianocore/edk2-platforms/tree/devel-
IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Board
Detection of “Board ID” and “FAB ID” is supported, so specific code blocks can be executed based on
these values. This feature allows a single BIOS binary image to support multiple platforms. Board-
specific code can be executed based on the detected Board ID and FAB ID, such as the following:

 Program GPIO
 Switch on/off patchable PCD
 Update UPD for Intel FSP

Code outside of the “Board” folder is common platform code, and should not have any dependency on
Board ID or FAB ID. Common platform code consumes PCDs which have been configured by board
specific code to control common features and devices.

Figure 11: Board Specific Configuration

https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Board
https://github.com/tianocore/edk2-platforms/tree/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Board

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Board Level Configuration

Intel Corporation, August 2018 page 33

Example: Configuration for LPDDR4 “Memory Down” (On
Board Memory)
One common configuration change is related to platform memory configuration. This example shows
changing LPDDR4 related-fields in FSP-M (FSP_M_CONFIG) for a specific platform:
https://github.com/tianocore/edk2-platforms/blob/devel-
IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Board/AuroraGlacier/BoardInitPreMem/BoardI
nitMiscs.c

EFI_STATUS
EFIAPI
AuroraUpdateFspmUpd (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN FSPM_UPD *FspUpdRgn
)

This example is based on Micron Mobile LPDDR4 SDRAM (MT53B256M32D1, MT53B512M32D2,
MT53B1024M32D4).

Memory Controller LPDDR4 Interface

The Intel Atom® Processor E3900 Series memory controller has four x32 LPDDR4 channels. Each
channel’s data bus width is 32 bit. 32 bit is also the data bus width of memory Rank, and each channel
can be connected to two memory Ranks.

Table 15: Critical Memory Controller Signals

Some Signal Name Description

MEM_CH0_DQA[31:0] Channel 0 x32 data bus to the LPDDR4 DRAM data bus.

MEM_CH0_CKE[1:0]A Channel 0 Clock Enable. 2 signal pins in total. One pin for each memory
Rank.

MEM_CH0_CS[1:0]A Channel 0 Chip Select. 2 signal pins in total. One pin for each memory Rank.

MEM_CH0_DQB[31:0] Channel 1 x32 data bus to the LPDDR4 DRAM data bus.

MEM_CH0_CKE[1:0]B Channel 1 Clock Enable. 2 signal pins in total. One pin for each memory
Rank.

MEM_CH0_CS[1:0]B Channel 1 Chip Select. 2 signal pins in total. One pin for each memory Rank.

MEM_CH1_DQA[31:0] Channel 2 x32 data bus to the LPDDR4 DRAM data bus.

MEM_CH1_CKE[1:0]A Channel 2 Clock Enable. 2 signal pins in total. One pin for each memory
Rank.

MEM_CH1_CS[1:0]A Channel 2 Chip Select. 2 signal pins in total. One pin for each memory Rank.

MEM_CH1_DQB[31:0] Channel 3 x32 data bus to the LPDDR4 DRAM data bus.

MEM_CH1_CKE[1:0]B Channel 3 Clock Enable. 2 signal pins in total. One pin for each memory
Rank.

MEM_CH1_CS[1:0]B Channel 3 Chip Select. 2 signal pins in total. One pin for each memory Rank.

https://github.com/tianocore/edk2-platforms/blob/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Board/AuroraGlacier/BoardInitPreMem/BoardInitMiscs.c
https://github.com/tianocore/edk2-platforms/blob/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Board/AuroraGlacier/BoardInitPreMem/BoardInitMiscs.c
https://github.com/tianocore/edk2-platforms/blob/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Board/AuroraGlacier/BoardInitPreMem/BoardInitMiscs.c

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Board Level Configuration

Intel Corporation, August 2018 page 34

LPDDR4 SDP (Single-Die, Dual-Channel Package)

The memory package shown in Figure 12 has one single die. There are two memory devices on each
die. Each device has an x16 data bus width, and its own dedicated Chip Select (CS) signal (not be
confused with Chip Select signal of the SoC memory controller).

Figure 12: Micron Single Die, Dual Channel Package

The term “channel” refers to the DQ signal arrays (not be confused with a Channel of the SoC memory
controller.)
The SoC memory controller requires LPDDR4 SDRAM with x32 rank, so two x16 devices in the same die
will be combined to form a x32 memory rank. Their Chip Select signals, CS0_A and CS0_B, will be
merged and connected to the SoC memory controller Chip Select signal.

Figure 13: Memory Controller Channel

Memory Controller Channel

MEM_CH0_DQA[31:0]

MEM_CH0_CKE[0]A

LPDDR4 DRAM Package

(One x32 Rank)

DQ[15:0]_A + DQ[15:0]_B

CS0_A + CS0_B

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Board Level Configuration

Intel Corporation, August 2018 page 35

For the memory configuration shown in Figure 13, the following Intel FSP parameters are required:

FSP_M_CONFIG ->FspmConfig.Ch0_RankEnable = 0x01; // [0]: Rank 0; [1]: Rank 1
FSP_M_CONFIG ->FspmConfig.Ch0_DeviceWidth = 0x01; // x16 device width

Note: the above code is board-specific and added into board specific function AuroraUpdateFspmUpd().
Please refer to below board specific file for detail:

https://github.com/tianocore/edk2-platforms/blob/devel-
IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Board/AuroraGlacier/BoardInitPreMem/BoardI
nitMiscs.c

LPDDR4 DDP (Dual-Die, Dual-Channel Package)

Figure 14: Micron Dual Die, Dual Channel Package

Figure 14 shows a slightly different memory configuration than Figure 12. The memory “package” has
two “dies”.
The Intel Atom® Processor E3900 Series memory controller requires LPDDR4 SDRAM with x32 Rank. So
in this example, two x16 DQ in the same die will be combined to form an x32 memory rank. The Chip
Select signals are merged and connected to the SoC memory controller Chip Select (Table 16). A DDP
package provides two x32 memory Ranks, which will be connected to a single channel of the SoC
memory controller (Figure 14).

https://github.com/tianocore/edk2-platforms/blob/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Board/AuroraGlacier/BoardInitPreMem/BoardInitMiscs.c
https://github.com/tianocore/edk2-platforms/blob/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Board/AuroraGlacier/BoardInitPreMem/BoardInitMiscs.c
https://github.com/tianocore/edk2-platforms/blob/devel-IntelAtomProcessorE3900/Platform/BroxtonPlatformPkg/Board/AuroraGlacier/BoardInitPreMem/BoardInitMiscs.c

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Board Level Configuration

Intel Corporation, August 2018 page 36

Table 16: Memory Rank Configuration

Rank Combined DQ Merged CS Combined
LPDDR4 Device

Rank 0 DQ[15:0]_A
DQ[15:0]_B

CS0_A Die 0, Channel A

CS0_B Die 0, Channel B

Rank 1 DQ[15:0]_A
DQ[15:0]_B

CS1_A Die 1, Channel A

CS1_B Die 1, Channel B

Figure 15: Memory Controller Channel

For the memory configuration shown in Figure 15, the following Intel FSP parameters are required:

FSP_M_CONFIG ->FspmConfig.Ch0_RankEnable = 0x03; // [0]: Rank 0; [1]: Rank 1
FSP_M_CONFIG ->FspmConfig.Ch0_DeviceWidth = 0x01; // x16 device width

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Enabling Verified Boot

Intel Corporation, August 2018 page 37

Enabling Verified Boot
This section describes the implementation of Verified Boot on Intel Atom® Processor E3900 Series
platforms using Intel TXE. Enabling Verified Boot includes the process of manifesting, signing and
assembling firmware components. This document does not cover all aspects or features of Intel TXE.

Root-of-Trust & System Firmware Integrity
System firmware components are typically located in re-programmable storage devices, such as eMMC
NAND Flash or SPI NOR Flash. The re-programmable storage mechanism provides flexibility for
firmware updating, but also introduces the risk of firmware attack. Attackers may attempt to replace
firmware components, either through software or hardware methods, with their own malicious
firmware.
System firmware is a key element in establishing platform root-of-trust, since it initializes the platform
after reset and launches the operating system. For a secure platform implementation, system firmware
must be verified prior to execution. This requires storing a root-of-trust element on a non-
reprogrammable device, such as read-only memory (ROM) or memory with a write-once fuse.
Verified Boot is a feature of Intel TXE used to authenticate firmware components, ensure they originate
from trusted sources, and verify their integrity. This verification is necessary for firmware components
stored on reprogrammable media devices.
The root-of-trust for Intel TXE is stored in read-only memory (ROM), in combination with an Original
Equipment Manufacturer (OEM) public key hash stored in a Field Programmable Fuse (FPF). The Intel
TXE ROM and FPF are write-once storage media which can never be reprogrammed, guaranteeing data
integrity after shipment. If any firmware component cannot pass identification authentication or
integrity verification, Intel® TXE prevents execution of that component.
Root-of-trust components for Verified Boot are the Intel TXE ROM and OEM key fused in FPF. Firmware
components in SPI flash are authenticated prior to execution. These components include the firmware
executed by Intel TXE, platform UEFI firmware (IA firmware), and peripheral drivers. Firmware
components, the OEM Key Manifest, and other OEM data stored in SPI flash must be signed and
manifested by either Intel or the OEM prior to distribution. A hash of the OEM root public key must be
burned into FPF at the end of manufacturing stage by OEM.

Boot Flow with Verified Boot
The firmware boot flow with TXE Verified Boot enabled is more complex than boot flow without TXE
Verified Boot.

1. After platform power on, Intel TXE and the PMC come out of reset and execute their respective
firmware. Intel TXE runs its code from the Intel TXE ROM.

2. Intel TXE ROM loads TXE firmware from SPI flash and authenticates the digital signature. If
signature authentication is successful, Intel TXE ROM will hand off control to the Intel TXE
Firmware. Otherwise the boot process will halt.

3. Intel TXE Firmware authenticates the Boot Policy Manifest of the IA Firmware. If the Boot Policy
Manifest passes signature authentication, Intel TXE loads IBBL into Shared SRAM and verifies
the hash of IBBL and IBB. If the hash verification passes, Intel TXE will notify the Power
Management Controller to de-assert processor reset. Otherwise, Intel TXE will not de-assert
processor reset.

4. After reset, the processor starts executing IBBL for early SoC initialization.
5. IBBL code calls Intel TXE to load IBB into temporary RAM (Cache as RAM).

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Enabling Verified Boot

Intel Corporation, August 2018 page 38

6. IBB initializes system memory (DRAM), copies OBB from SPI NOR flash into DRAM, and verifies
the OBB hash. If OBB passes hash verification, IBB will hand off control to OBB. Otherwise, IBB
will stop the boot process.

7. The IA processor executes OBB. OBB installs UEFI boot services, creates system tables (ACPI,
SMBIOS), installs UEFI runtime services, and locates the OS Boot Loader on a mass storage
device.

8. If UEFI Secure Boot is enabled, OBB authenticates the OS Boot Loader. If the Boot Loader
passes signature authentication of UEFI Secure Boot, OBB will load the OS.

Figure 16: Firmware Boot Flow, Verified Boot Enabled

Example Attack Scenario: Altered OBB Image
Attacker reads firmware from the SPI flash, then uses specific software tools to insert a malicious
System Management Mode (SMM) UEFI driver into the OBB region of the IA firmware. The attacker
flashes the altered firmware image into the SPI flash.
If Verified Boot is not enabled, the system could still boot to the OS. The risk is that the malicious SMM
UEFI driver will take control at OS runtime when a SMI is triggered and the CPU transitions SMM mode,
which has the ability to access system memory and compromise confidential data.
If Verified Boot is enabled, IBB will measure the hash value of OBB and discover the OBB image has
been altered. This failed verification causes the system to halt during IBB. The board will need to be
reprogrammed with firmware signed by the OEM.

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Enabling Verified Boot

Intel Corporation, August 2018 page 39

Verified Boot Ingredients

Verified Boot Firmware Components
Intel TXE ROM

Vendor: Intel Corporation
Storage: TXE, Non-reprogrammable
Intel TXE includes read-only memory (ROM) containing initialization and cryptography code. When Intel
TXE is powered on, execution starts from the Intel TXE ROM.
The firmware code in the Intel TXE ROM is programmed during SoC manufacturing. The ROM cannot be
changed once it is programmed by Intel at the factory.
The Intel TXE ROM also includes code for verifying firmware loaded from SPI flash. Intel TXE uses an
Intel owned key contained in the ROM to authenticate the Intel TXE Firmware. Intel TXE ROM functions
as the platform root-of-trust.

Intel TXE Firmware

Vendor: Intel Corporation
Storage: SPI Flash, Reprogrammable
Intel TXE Firmware runs on Intel TXE, implementing additional system bring-up code and security
applications. The Intel TXE Firmware also includes code for loading and authenticating platform
firmware during boot. Intel TXE Firmware for MinnowBoard 3 is stored in the SPI flash device.

Intel Architecture (IA) Firmware

Vendor: OEM
Storage: SPI NOR Flash, Reprogrammable
IA Firmware is the first piece of code executed by the IA processor coming out of reset. This open
source project is based on EDK II available from tianocore.org, which follows the UEFI and UEFI PI
Specifications.
The IA Firmware image is divided three stages. Initial Boot Block Loader (IBBL), Initial Boot Block (IBB),
and OEM Boot Block (OBB).
IBBL is verified by TXE Firmware and loaded into Shared SRAM by TXE. IBBL triggers TXE Firmware to
verify and load IBB from SPI NOR flash into CPU cache, using “Cache as RAM” as storage. IBB verifies
OBB and loads OBB from SPI NOR flash into DRAM.
IA Firmware is stored in the SPI NOR flash.

Power Management Controller (PMC) Firmware
Vendor: Intel
Storage: SPI Flash, Reprogrammable
This firmware is used to initialize the PMC, which controls platform power planes.

Integrated Firmware Image (IFWI)
The OEM uses Intel FIT tool stitches all firmware components together to generate the IFWI binary,
which is programmed into the IFWI region SPI NOR flash.

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Enabling Verified Boot

Intel Corporation, August 2018 page 40

Verified Boot Keys
Intel TXE Verified Boot uses RSA 2048 public key infrastructure to sign and verify firmware
components. The firmware vendor must sign the firmware before distribution and post a public key.
Figure 17 lists the firmware components and corresponding key storage locations.

Figure 17: Intel TXE Keys, Owners, and Storage Locations

Firmware Component Private Key
Owner

Public Key
Consumer

Location of Public Key Hash

Intel TXE Firmware Intel Intel TXE Intel TXE ROM

PMC Firmware Intel Intel TXE Intel TXE ROM

OEM Key Manifest OEM Intel TXE SoC FPF

Boot Policy Manifest (IA
Firmware Hash Inside)

OEM Intel TXE OEM Key Manifest

Audio Firmware OEM Intel TXE OEM Key Manifest

Camera Firmware OEM Intel TXE OEM Key Manifest

Public key hash values for Intel components are stored in the Intel TXE ROM. Public key hash values for
OEM firmware components are stored in OEM Key Manifest in SPI flash. Hash of public key for OEM Key
Manifest is stored in SoC FPF fuse. The vendor securely stores the private key used to sign the firmware.

Public Key for OEM Key Manifest
The OEM Key Manifest contains the public key hash for all OEM firmware components in the SPI NOR
flash. The OEM Key Manifest must be signed to protect the integrity of stored OEM keys.
The public key hash for authenticating the OEM Key Manifest is programmed into FPF at the end of
manufacturing. The FPF is a “write-once” chip. Once the OEM public key’s hash is programmed into FPF,
it can never be reprogrammed. The OEM claims ownership of the platform by fusing the key into FPF.
The OEM key stored in FPF can be treated as root-of-trust for OEM components.

Public Keys for OEM Firmware Components
OEM firmware components on SPI NOR flash or other reprogrammable media must be signed. The OEM
signs OEM firmware components with OEM private keys, and inserts the corresponding OEM public key
hash values in the IWFI OEM Key Manifest.
Prior to execution, Intel TXE authenticates each OEM firmware component based on the corresponding
public key stored in the OEM Key Manifest.

Manifesting and Signing Firmware Components
To enable Verified Boot, firmware components have to be manifested and signed. The Intel TXE
firmware release package provides an Intel Manifest Extension Utility (MEU) to support manifesting and
signing different types of files (e.g. Boot Policy Manifest, OEM Key Manifest, audio firmware, etc.). The
Apollo Lake Signing and Manifesting Guide, which is part of the Intel® TXE Firmware (FW) Production
Version (PV) release package, gives detailed instructions on how to use Intel MEU.

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Enabling Verified Boot

Intel Corporation, August 2018 page 41

Signing and Manifesting Tools
OpenSSL

OepnSSL is available for download: http://www.openssl.org/source

Intel Manifest Extension Utility (MEU)

The Intel Manifest Extension Utility (MEU) is used to sign and manifest firmware binaries. The manifest
tool leverage OpenSSL to sign a file.
Intel MEU is part of the Intel® TXE Firmware (FW) Production Version (PV) release package version
3.0.20.1139 (kit number 120568), which is available on https://platformsw.intel.com. Customers could
contact Intel representative for information on downloading the release package.

Assembling the Full IFWI Image
After each firmware component has been manifested and singed, the OEM stitches them together to
form an 8MB SPI Flash Image to program into the SPI NOR flash.

Intel Firmware Image Tool (FIT)
The Intel firmware Image tool (FIT), which is part of the Intel® TXE Firmware (FW) Production Version
(PV) release package, assembles firmware components into a single firmware image.

• Please download Intel® TXE Firmware (FW) Production Version (PV) release package
3.0.20.1139 (kit number 120568) from https://platformsw.intel.com or contact your Intel
representative to get FIT.

• Please follow the Signing and Manifesting Guide within the release package to enable Boot
Guard.

• Please follow the Intel® Trusted Execution Engine (Intel® TXE) Firmware Bring-Up Guide in the
release package to create a full IFWI image.

http://www.openssl.org/source
https://platformsw.intel.com/
https://platformsw.intel.com/

UEFI Firmware Enabling Guide for the Intel Atom® Processor E3900 Series Disclaimers

Intel Corporation, August 2018 page 42

© 2018, Intel Corporation.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted
by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising
from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All
information provided here is subject to change without notice. Contact your Intel representative to
obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause
deviations from published specifications. Currently characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be
obtained by calling 1-800-548-4725, or online at www.intel.com/design/literature.htm.

Intel, the Intel logo, [List the Intel trademarks in your document] are trademarks of Intel Corporation or
its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

http://www.intel.com/design/literature.htm

	Open Source UEFI Firmware Enabling Guide: Intel Atom® Processor E3900 Series Platforms
	Authors
	Contents
	Intended Audience
	Prerequisites
	Acronyms and Terminology
	Related Documents and Tools
	Revision History
	List of Tables
	List of Figures

	Firmware Project Overview
	Firmware Components within IFWI
	Platform Firmware
	Intel Trusted Execution Engine (TXE) Firmware
	Intel Architecture (IA) Firmware
	Power Management Controller (PMC) Firmware
	Microcode and P-Unit Firmware

	SPI NOR Flash Layout
	SPI Flash Regions
	IFWI Region
	Logical Data Region
	Flash Image Tool (FIT)

	Firmware Boot Flow
	Pre- IA Firmware Stage
	IBBL Stage
	IBB Stage
	OBB Stage
	UEFI IA Firmware Volumes in IBBL, IBB and OBB

	Configuring the Intel® FSP
	Intel FSP Release Package and Related Tools
	Common Parameters Controlled by Intel FSP
	Integrating Intel FSP into Open Source UEFI IA Firmware
	Rebase FSP
	Rebase FSP-M
	Rebase FSP-S

	Split FSP FD File
	Integrate Intel FSP FV files into UEFI IA Firmware
	Add Intel FSP Wrapper Modules into UEFI IA Firmware
	Customize Intel FSP Configuration Data at Boot Time
	Extract Intel FSP Output (HOB)

	Boot Flow from the Viewpoint of Intel FSP

	IA Processor Initialization Flow
	High Level Flow for IA Processor Initialization
	Reset Vector
	PEI Stage IA Processor Initialization
	IA Processor PEI to DXE Handoff
	DXE Stage IA Processor Initialization
	Multi-Processor Initialization
	System Management Mode (SMM)
	Processor Power Management (PPM)
	Power Management Initialization
	Power Management Features Reporting

	Processor Digital Thermal Sensor (DTS) for Thermal Reporting
	Register Interfaces
	UEFI SMM Driver for DTS
	Platform ACPI Table
	Global NVS Memory Operation Region
	Thermal Zone in ACPI DSDT
	General Purpose Event in ACPI DSDT

	Thermal Management Logic Flow

	Board Level Configuration
	Board Specific Configuration
	Example: Configuration for LPDDR4 “Memory Down” (On Board Memory)
	Memory Controller LPDDR4 Interface
	LPDDR4 SDP (Single-Die, Dual-Channel Package)
	LPDDR4 DDP (Dual-Die, Dual-Channel Package)

	Enabling Verified Boot
	Root-of-Trust & System Firmware Integrity
	Boot Flow with Verified Boot
	Example Attack Scenario: Altered OBB Image
	Verified Boot Ingredients
	Verified Boot Firmware Components
	Intel TXE ROM
	Intel TXE Firmware
	Intel Architecture (IA) Firmware

	Power Management Controller (PMC) Firmware
	Integrated Firmware Image (IFWI)
	Verified Boot Keys
	Public Key for OEM Key Manifest
	Public Keys for OEM Firmware Components

	Manifesting and Signing Firmware Components
	Signing and Manifesting Tools
	OpenSSL
	Intel Manifest Extension Utility (MEU)

	Assembling the Full IFWI Image
	Intel Firmware Image Tool (FIT)

