
1

2

3

4

5

6

For how to tell which product numbers are Sandy Bridge, check
here:
http://www.intel.com/products/processor_number/about/core.ht
m

For more on these features see
http://www.intel.com/consumer/products/processors/core-
family.htm or http://www.intel.com/technology/architecture-
silicon/2ndgen/index.htm

7

8

The logic for identifying issues on Microarchitecture Codename Sandy Bridge
is embedded into the interface. All the formulas and metrics used are the
same as the ones given in this guide. You no longer have to apply formulas
and rules to the data yourself to figure out what it means – using this guide
and the interface tuning features, you can easily pinpoint problems and
possible solutions.

The formulas and metrics are only applied to the General Exploration profile,
and the General Exploration viewpoint (which is automatic). For the other
profiles, it will just show the raw data.

Also view our video demo of this interface at:

http://software.intel.com/en-us/videos/channel/parallel-
programming/the-intel-vtune-amplifier-xe-analysis-and-results-
interface-for-intel-microarchitecture-codename-sandy-
bridge/1265162566001

9

http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001
http://software.intel.com/en-us/videos/channel/parallel-programming/the-intel-vtune-amplifier-xe-analysis-and-results-interface-for-intel-microarchitecture-codename-sandy-bridge/1265162566001

10

11

Note that issue highlighting occurs under 2 conditions:

1. The value for the metric is over VTune’s pre-determined
threshold

2. The associated function uses 5% or greater of the CPU
clockticks sampled

12

13

Both Intel® Hyper-Threading Technology and Intel® Turbo Boost 2.0
Technology can be enabled or disabled through BIOS on most platforms.

Contact with the system vendor or manufacturer for the specifics of any
platform before attempting this. Incorrectly modifying bios settings
from those supplied by the manufacturer can result in rendering the
system completely unusable and may void the warranty.

Don’t forget to re-enable these features once you are through with the
software optimization process!

14

Note: While VTune Amplifier XE’s Concurrency, Timeline and Locks and Waits
features can also be helpful in threading an application, this slideset is not
aimed at the process of introducing threads.

The process described here could be used either before or after threading.

However, we *do* recommend that you follow a top-down process when
optimizing: beginning with system tuning (if appropriate), then algorithmic
tuning, then microarchitectural tuning. The name of Software on Hardware
tuning just means we are tuning software for specific hardware.

Remember for all upcoming slides – that you should only focus on hotspots!
Only try to determine efficiency, identify causes, and optimize in hotspots!

15

For the 2nd generation Intel® Core™ processor family, the
CPU_CLK_UNHALTED.THREAD counter measures unhalted clockticks on a per
thread basis. So for each tick of the CPU's clock, the counter will count 2
ticks if Hyper-Threading is enabled, 1 tick if Hyper-Threading is disabled.
There is no per-core clocktick counter.

There is also a CPU_CLK_UNHALTED.REF counter, which counts unhalted
clockticks per thread, at the reference frequency for the CPU. In other words,
the CPU_CLK_UNHALTED.REF counter should not increase or decrease as a
result of frequency changes due to Turbo Mode 2.0 or Speedstep Technology.

% Pipeline Slots Retired and Changes in CPI methods rely on VTune Amplifier
XE’s event-based sampling. The Code Examination method relies on using
VTune Amplifier XE’s capability as a source/disassembly viewer.

Formula:

(UOPS_RETIRED.RETIRE_SLOTS/

(4*CPU_CLK_UNHALTED.THREAD))

Thresholds: Investigate if -

% Retiring < .9

This metric is based on the fact that when operating at peak
performance, the pipeline on a 2nd generation Core CPU should
be able to retire 4 micro-operations per clock cycle (or
“clocktick”). The formula looks at “slots” in the pipeline for each
core, and sees if the slots are filled, and if so, whether they
contained a micro-op that retired.

The thresholds are general guidelines. Depending on the
domain, some applications can run with less slots allocated
retiring than the thresholds above and still be very efficient. For
example, it is common for database workloads to be running
with only 20-25% of allocated slots retiring per clocktick (due to
heavy I/O).

Formula:

CPU_CLK_UNHALTED.THREAD/INST_RETIRED.ANY

Threshold:

In the interface, CPI will be highlighted if > 1. This is a very general rule
based on the fact that some very well tuned apps achieve CPIs of 1 or below.
However, many apps will naturally have a CPI of over 1 – it is very dependent
on workload and platform. It is best used as a comparison factor – know your
app’s CPI and see if over time it is moving upward (that is bad) or reducing
(good!).

Note that CPI is a ratio! Cycles per instruction. So if the code size changes
for a binary, CPI will change. In general, if CPI reduces as a result of
optimizations, that is good, and if it increases, that is bad. However there are
exceptions! Some code can have a very low CPI but still be inefficient
because more instructions are executed than are needed. This problem is
discussed using the Code Examination method for determining efficiency.

Another Note: CPI will be doubled if using Intel® Hyper-threading. With
Intel® Hyper-Threading enabled, there are actually 2 different definitions of
CPI. We call them "Per Thread CPI" and "Per Core CPI". The Per Thread CPI
will be twice the Per Core CPI. Only convert between per Thread and per Core
CPI when viewing aggregate CPIs (summed for all logical threads).

Note: Optimized code (i.e: SSE instructions) may actually lower the CPI, and
increase stall % – but it will increase the performance. CPI is just a general
efficiency metric – the real measure of efficiency is work taking less time.

This method involves looking at the disassembly to make sure the most
efficient instruction streams are generated. This can be complex and can
require an expert knowledge of the Intel instruction set and compiler
technology. What we have done is describe how to find 2 easy-to-detect
issues and suggest how they may be fixed using new features of Intel®
Microarchitecture Codename Sandy Bridge.

For more on AVX, see: http://software.intel.com/en-us/articles/intel-avx-new-
frontiers-in-performance-improvements-and-energy-efficiency/

SSE instructions will look like: addps xmm4, xmm5.

+ addss is a s(calar) Intel® SSE instruction – which is better than x87
instructions- but is not as good as packed SSE instructions.

21

22

These are issues that result in inefficient pipeline use and high CPI. In
addition to being in rough order of likelihood, these issues have been
classified into the 4 categories of pipeline slot usage identified in the Intel®
64 and IA-32 Architectures Optimization Reference Manual, Appendix B.3.
The General Exploration profile also groups metrics according to these 4
categories. If desired, you can see how your application used the available
pipeline slots per cycle using the first 4 metrics to the right of CPI: Retired
Pipeline Slots, Cancelled Pipeline Slots, Back-End Bound Pipeline Slots, and
Front-End Pipeline Slots.

http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf

Note that the way this methodology allows us to classify what
percentage of all pipeline slots end up in each category, for each
cycle and for each core. It is possible that for a given dataset,
there may be a significant percentage of pipeline slots in multiple
categories that merit investigation. Ideally a large percentage of
slots will fall into the “Retired” category, but even then, it may be
possible to make your code more efficient.

For a complete description of this methodology, see the Intel®
64 and IA-32 Architectures Optimization Reference Manual,
Appendix B.3. You can also view our 10-minute video, which
describes the methodology in more detail, here:
http://software.intel.com/en-us/videos/channel/parallel-
programming/performance-analysis-methodology-for-intel-
microarchitecture-codename-sandy-bridge/1265132823001.

24

http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001
http://software.intel.com/en-us/videos/channel/parallel-programming/performance-analysis-methodology-for-intel-microarchitecture-codename-sandy-bridge/1265132823001

The Front-End consists of several different structures. It is responsible for
fetching instructions, decoding them into micro-operations, and then
delivering those micro-operations to the Back-End of the pipeline. For Intel®
Microarchitecture Codename Sandy Bridge, a maximum of 4 micro-operations
can be delivered to the Back-End portion of the pipeline per cycle (per core).

Front-End issues are generally caused by delays in fetching code (due to
caching or ITLB issues) or in decoding instructions (due to specific instruction
types or queueing issues). Front-End issues are generally resolved by
compiler techniques.

25

The Back-End of the pipeline is responsible for accepting micro-operations
from the Front-End, then re-ordering them as necessary to schedule their
execution in the various execution units, retrieving needed operands from
memory, executing the operations, then committing the results to memory.
If the Back-End is not able to accept micro-operations from the Front-End, it
is generally because internal queues are full. Most of the time this is due to
data access issues – the Back-End’s structures are being taken up by micro-
operations that are waiting on data from the caches.

26

Cancelled micro-operations most likely happen because the Front-End mis-
predicted a branch. This is discovered in the Back-End when the branch
operation is executed. At this point, if the target of the branch was
incorrectly predicted, the micro-operation and all subsequent incorrectly
predicted operations are cancelled and the Front-End is re-directed to begin
fetching instructions from the correct target.

27

In general, having as many pipeline slots retiring per cycle as possible is the
goal. Only one issue is identified for this category – which deals with how to
get micro-operations to this stage faster.

28

29

Formulas:

% of cycles spent on memory access (LLC misses):

(MEM_LOAD_UOPS_MISC_RETIRED.LLC_MISS_PS * 180) / CPU_CLK_UNHALTED.THREAD

% of cycles spent on last level cache access (2nd level misses that hit in LLC):

((MEM_LOAD_RETIRED.L3_HIT_PS * 26) + (MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HIT_PS
* 43) +
(MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HITM_PS * 60)) / CPU_CLK_UNHALTED.THREAD

Thresholds: Investigate if –

% cycles for LLC miss ≥ .2,

% cycles for LLC Hit ≥ .2

Doing the cacheline replacement analysis study (the first suggestion) can be very helpful in
resolving these issues. The approach is to figure out at what level most of the application’s loads
are being satisfied, then look one level above. This is because if loads are coming from a
particular level of cache or memory, it is because the data has been replaced at the level above
(for example, if loads are coming from memory, the data has been replaced in the LLC). The
study shows how to identify the areas of your code that are causing the replacements to occur.
Once these are identified, you can try changing the algorithm, doing non-temporal stores, or one
of the other suggestions above.

Formula:

% of cycles spent accessing data modified by another core:

(MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HITM_PS * 60) / CPU_CLK_UNHALTED.THREAD

Thresholds: Investigate if –

% cycles accessing modified data > .05

This metric is also called write sharing. It occurs when one core needs data that is found in a
modified state in another core’s cache. This causes the line to be invalidated in the holding core’s
cache and moved to the requesting core’s cache. If it is written again and another core requests
it, the process starts again. The cacheline ping pong-ing between caches causes longer access
time than if it could be simply shared amongst cores (as with read-sharing).

Write sharing can be caused by true sharing, as with a lock or hot shared data structure, or by
false sharing, meaning that the cores are modifying 2 separate pieces of data stored on the same
cacheline.

Note that in the case of real write sharing that is caused by a lock, Amplifier XE’s Locks and Waits
analysis should also indicate a problem. This hardware-level analysis will detect other cases as
well though (such as false sharing or write sharing a hot data structure).

Formula:

Blocked Store Forwarding Cost = (LD_BLOCKS_STORE_FORWARD * 13) /
CPU_CLK_UNHALTED.THREAD

Threshold: Investigate if –

Cost ≥ .05

Store forwarding occurs when there are two memory instructions in the pipeline, a store followed
by a load from the same address. Instead of waiting for the data to be stored to the cache, it is
“forwarded” back along the pipeline to the load instruction, saving a load from the cache. Store
forwarding is the desired behavior, however, in certain cases, the store may not be able to be
forwarded, so the load instruction becomes blocked waiting for the store to write to the cache and
then to load it.

32

A cacheline split is any load or store that traverses a 64-byte boundary.

Formulas:

Split Load Cost = (MEM_UOP_RETIRED.SPLIT_LOADS_PS * 5) / CPU_CLK_UNHALTED.THREAD

Split Store Ratio = MEM_UOP_RETIRED.SPLIT_STORES_PS /
MEM_UOP_RETIRED.ANY_STORES_PS

Thresholds: Investigate if –

Split load cost ≥ .1 or

Split store ratio is > 0.01

Beginning with the Intel® Core™ architecture, the penalty for cacheline splits has been reduced
to only 5 cycles. However, if there are repeated splits occurring, the penalty can grow, and even
just a 5-cycle increase in latency can make a difference in application performance.

33

Formula:

Aliasing Conflicts Cost = (LD_BLOCKS_PARTIAL.ADDRESS_ALIAS * 5) /
CPU_CLK_UNHALTED.THREAD

Threshold: Investigate if

Aliasing conflicts cost ≥ .1

This occurs when a load is issued after a store and their memory addresses are offset by (4K).
When this is processed in the pipeline, the issue of the load will match the previous store (the full
address is not used at this point), so pipeline will try to forward the results of the store and avoid
doing the load (this is store forwarding). Later on when the address of the load is fully resolved,
it will not match the store, and so the load will have to be re-issued from a later point in the pipe.
This has a 5-cycle penalty in the normal case, but could be worse in certain situations, like with
un-aligned loads that span 2 cache lines.

34

Formula:
DTLB Overhead = ((DTLB_LOAD_MISSES.STLB_HIT * 7) +
DTLB_LOAD_MISSES.WALK_DURATION) / CPU_CLK_UNHALTED.THREAD

Threshold: Investigate if-

DTLB Overhead ≥ .1

On target data locality to TLB size: this is accomplished via data blocking and trying to minimize
random access patterns.

Note: this is more likely to occur with server applications or applications with a large random
dataset

Formulas:
Flags Merge Stalls =
PARTIAL_RAT_STALLS.FLAGS_MERGE_UOP_CYCLES/CPU_CLK_UNHALTED.TH
READ

LEA Stalls =
PARTIAL_RAT_STALLS.SLOW_LEA_WINDOW/CPU_CLK_UNHALTED.THREAD

Threshold: Investigate if-

Flags Merge Stalls > .05

LEA Stalls > .05

Long-latency instructions cause the Back-end to refuse instructions from the
front-end (allocation stalls).

36

Formula:

Assist % = IDQ.MS_CYCLES / CPU_CLK_UNHALTED.THREAD

Threshold: Investigate if –

Assist Cost ≥ .05

There are many instructions that can cause assists when there is no
performance problem. If you see MS_CYCLES it doesn’t necessarily mean
there is an issue, but whenever you do see a significant amount of
MS_CYCLES, check the other metrics to see if it’s one of the problems we
mention.

37

Formula:

Mispredicted branch cost: (20* BR_MISP_RETIRED.ALL_BRANCHES_PS)/
CPU_CLK_UNHALTED.THREAD

Threshold: Investigate if -

Cost is ≥ .2

Note that all applications will have some branch mispredicts - it is not the
number of mispredicts that is the problem but the impact.

To do hand-tuning, you need to locate the branch causing the mispredicts.
This can be difficult to track down due to the fact that this event will normally
tag to the first instruction in the correct path that the branch takes.

Formula:

Machine Clear cost: ((MACHINE_CLEARS.MEMORY_ORDERING +
MACHINE_CLEARS.SMC + MACHINE_CLEARS.MASKMOV) * 100) /
CPU_CLK_UNHALTED.THREAD

Threshold: Investigate if -

Cost is ≥ .02

Machine clears are generally caused by either contention on a lock, or failed
memory disambiguation from 4k aliasing (both earlier issues). The other
potential cause is self-modifying code (SMC).

Formula:

IDQ_UOPS_NOT_DELIVERED.CORE / (CPU_CLK_UNHALTED.THREAD * 4)

Threshold: Investigate if –

Front-End Bounc uOps ≥ .15

Assists or excessive Branch Mispredicts, all on previous slides, could be the
reason for front-end issues, so check for and resolve those problems first.
This issue may also be caused by instruction cache misses (on server apps),
which are generally fixed by better code layout.

41

42

