
Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries

Intel® Memory Latency Checker v3.8

Documentation

 2

Contents

1 Introduction .. 4

2 Installation ... 4

3 How to report security vulnerabilities .. 4

4 H/W prefetcher control .. 5

5 What does the tool measure ... 5

6 How does it work ... 7

6.1 MEASURING IDLE LATENCY .. 7
6.2 MEASURING BANDWIDTH ... 7
6.3 MEASURING LOADED LATENCY.. 8
6.4 MEASURING CACHE-TO-CACHE TRANSFER LATENCY ... 9

7 Command line parameters ... 9

8 Example usages.. 18

8.1 COLLECTING ALL LATENCIES AND BANDWIDTH DATA ...18
8.1.1 Default invocation ...18
8.1.2 Running MLC without root privileges ...18
8.1.3 Using only one hyper-thread from each core ..18

8.2 MEASURING IDLE LATENCY ...19
8.2.1 Measuring local memory latency from a specific CPU ...19
8.2.2 Measuring remote memory latency from a specific CPU ..19
8.2.3 Measuring latencies with different stride length ...19
8.2.4 Measuring cache hit latency ..19
8.2.5 Measuring latencies using fixed number of requests ...19
8.2.6 Measuring idle latency to a specific NUMA node ...20
8.2.7 Measuring idle latency with random access ..20
8.2.8 Measuring idle latency to persistent memory ..20

8.3 MEASURING LATENCY MATRIX ...21
8.3.1 Default invocation ...21
8.3.2 Measuring latencies on all the cpus ..21

8.4 MEASURING BANDWIDTH MATRIX ..21
8.4.1 Default invocation ...21
8.4.2 Measuring b/w matrix with different read/write ratios ..21
8.4.3 Using AVX 256-bit or 512-bit loads/stores ..22

8.5 MEASURING PEAK INJECTION BANDWIDTH ...22
8.5.1 Default invocation ...22
8.5.2 Using AVX 256-bit or 512-bit loads/stores ..22
8.5.3 Measuring peak b/w for a subset of CPUs...22
8.5.4 Measuring peak cache b/w ..23
8.5.5 Measuring peak b/w with only one thread from each core ..23

8.6 MEASURING MAXIMUM BANDWIDTH ..23
8.7 MEASURING LOADED LATENCIES...23

8.7.1 Default invocation ...23
8.7.2 Measuring loaded latencies for different read/write ratios ...24
8.7.3 Measuring each B/W data points for specified duration ...24
8.7.4 Measuring total b/w without latency ...24
8.7.5 Measuring b/w available for a subset of CPUs ...24
8.7.6 Measuring latency for a particular b/w ...25
8.7.7 Measuring latencies for specified load delay injection levels ...25
8.7.8 Measuring latencies with random access ..25
8.7.9 Measuring latencies with random access within specified window for randomness25

 3

8.7.10 Measuring b/w for cache hierarchies ...26
8.7.11 Measuring b/w for non-inclusive L3 cache ...26
8.7.12 Measuring peak injection b/w with a mix of sequential and random read-only traffic26
8.7.13 Measuring latency and b/w with a mix of local and remote traffic27
8.7.14 Measuring b/w with mix of dram and persistent memory ...27
8.7.15 Measuring b/w with different injection delays ..27
8.7.16 Measuring two traffic streams from each thread ..28
8.7.17 Measuring loaded latency with 1 Hyper-thread per core ...28
8.7.18 Measuring bandwidth from a set of cores to memory on a numa node29
8.7.19 Measuring bandwidth with threads that do random accesses ..29
8.7.20 Measuring loaded latency from a core other than 0 ...29
8.7.21 Measuring bandwidth with specific data in the buffers allocated29

8.8 MEASURING CACHE TO CACHE TRANSFER LATENCIES ..30
8.8.1 Default invocation ...30
8.8.2 Measuring HITM latency from remote L2 cache ...30
8.8.3 Measuring HIT latency from remote L2 cache ..30
8.8.4 Measuring HIT latency from remote L3 cache ..31

Appendix ... 32

 4

1 Introduction
An important factor in determining application performance is the time required for the

application to fetch data from the processor’s cache hierarchy and from the memory

subsystem. In a multi-socket system where Non-Uniform Memory Access (NUMA) is

enabled, local memory latencies and cross-socket memory latencies will vary

significantly. Besides latency, bandwidth (b/w) also plays a significant role in

determining performance. So, measuring these latencies and b/w is important to establish

a baseline for the system under test, and for performance analysis.

Intel® Memory Latency Checker (Intel® MLC) is a tool used to measure memory

latencies and b/w, and how they change with increasing load on the system. It also

provides several options for more fine-grained investigation where b/w and latencies

from a specific set of cores to caches or memory can be measured.

2 Installation
Intel® MLC supports both Linux and Windows.

Linux

• Copy the mlc binary to any directory on your system

• Intel® MLC dynamically links to GNU C library (glibc/lpthread) and this library

must be present on the system

• Root privileges are required to run this tool as the tool modifies the H/W prefetch

control MSR to enable/disable prefetchers for latency and b/w measurements. See

section 8.1.2 for instructions on running without root privileges

• MSR driver (not part of the install package) should be loaded. This can typically

be done with 'modprobe msr' command if it is not already included.

Windows

• Copy mlc.exe and mlcdrv.sys driver to the same directory. The mlcdrv.sys driver

is used to modify the h/w prefetcher settings

Previous releases of MLC s/w provided two sets of binaries (mlc and mlc_avx512).

mlc_avx512 was compiled with newer tool chain to support AVX512 instructions while

mlc binary supported SSE2 and AVX2 instructions. With MLC v3.7 release onwards,

only one binary is provided which supports SSE2, AVX2 and AVX512 instructions. By

default AVX512 instructions won’t be used whether the processor supports it or not

unless –Z argument is added explicitly to the command line. Please refer to section 7

for more details.

3 How to report security vulnerabilities
If you have information about a security issue or vulnerability with Intel® MLC, please

send an e-mail to secure@intel.com. Encrypt sensitive information using our PGP public

key.

 5

4 H/W prefetcher control
It is challenging to accurately measure memory latencies on modern Intel processors as

they have sophisticated h/w prefetchers. Intel® MLC automatically disables these

prefetchers on cores measuring the latency and enables them on cores where the b/w is

generated and restores them to their previous state on completion. The prefetcher control

is exposed through a MSR (https://software.intel.com/en-us/articles/disclosure-of-hw-

prefetcher-control-on-some-intel-processors) and MSR access requires root level

permission. So, Intel® MLC needs to be run as ‘root’ on Linux. On Windows, we have

provided a signed driver that is used for this MSR access. If Intel® MLC can’t be run with

root permissions, please see section 8.1.2 for more information.

5 What does the tool measure
When Intel® MLC is launched without any additional parameters, it automatically

identifies the system topology and measures the following (a screen shot is shown for

each):

1. A matrix of idle memory latencies for requests originating from each of the

sockets and addressed to each of the available sockets

2. Peak injection memory b/w measured (with all accesses to local memory) for

requests with varying amounts of reads and writes (each core generating requests

as fast as possible)

A

3. A matrix of memory b/w values for requests originating from each of the sockets

and addressed to each of the available sockets

https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors
https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors

 6

4. Latencies at different b/w points

5. Latencies between caches in the processor

Intel® MLC also provides command line arguments for fine grained control over latencies

and b/w that are measured.

Here are some of the things that are possible with command line arguments:

 7

• Measure latencies from a specific core for requests addressed to a specific node

with memory.

• Measure cache latencies

• Measure b/w from a subset of the cores/sockets

• Measure b/w for different read/write ratios

• Measure latencies for random address patterns instead of sequential

• Change stride size for latency measurements

6 How does it work

6.1 Measuring Idle Latency

Idle latency is also known as unloaded latency. Basically, when the latency is measured,

the system is mostly idle with no other application or workload running. Idle latency is

measured by doing dependent loads (similar to pointer chasing). A buffer is initialized

such that each line (64 byte line) is pointing to another line/address. This way we can

create a list of dependent loads. The tool starts a timer and executes loads by following

this chain of loads and stops the timer after executing millions of such loads and provides

the average time to execute one load by dividing the total time taken by the number of

loads executed. This methodology can be used to measure the latency of various cache

levels as well as DRAM.

The tool itself does not know whether a load is hitting in any caches or going to memory.

By appropriately sizing the buffer, we can ensure all the loads are hitting in certain level

of cache. For example, if L2 cache is 1MB and L3 cache is 30MB, any repeated accesses

to buffer of size 4MB would entirely miss L2 but hit in L3. This way the latency

measured can be assumed as the hit latency to L3 cache. However, if the buffer size is

60MB, then the accesses would miss L3 cache and load from memory thus providing

latencies to memory.

By default, MLC disables h/w prefetcher on the thread measuring the latency and uses

sequential accesses. Basically, a buffer is initialized such that each cache line is pointing

to the next sequential address. However, since h/w prefetchers can’t be disabled in all

environments, MLC also allows ways to measure latencies with random access. In this

case, a buffer is initialized such that each line is pointing to another line selected

randomly. However, to reduce the TLB miss penalties, randomization is not done over

the entire address range of the buffer (which is typically 2GB). Instead, the buffer is

divided into smaller chunks (like 512 KB) and all lines within each chunk are randomly

accessed before moving to the next chunk. This methodology would avoid TLB miss

penalties as well as beat the h/w prefetchers from prefetching the lines.

6.2 Measuring Bandwidth

For measuring b/w, MLC executes load instructions that are not consumed (i.e the data

that is returned as part of the load is not consumed in any subsequent instructions). This

allows MLC to generate maximum possible b/w. MLC spawns one s/w thread on each of

the configured h/w threads (aka logical processors) and each thread executes

 8

independently. The addresses that each thread accesses are independent and there is no

sharing of data between threads. The buffer size used by the threads determine whether

MLC is measuring L1/L2/L3 cache b/w or memory b/w. MLC does not access any h/w

performance monitoring counters to report the b/w. Since MLC knows how many

loads/stores it is executing, it can report the total b/w.

The buffer size should be correctly specified to measure b/w at different cache

hierarchies or memory. To measure memory b/w, MLC uses really large buffers (each

thread allocating at least 100MB of buffer). The total size of all the buffers used by the

threads on a socket should exceed the total size of all the last level cache on that socket to

be able to measure the memory b/w.

MLC supports generating different traffic patterns. For example, when -W3 (see example

8.4.2) option is specified, the traffic generated would be 3 reads with 1 write. The

read/write ratio is selected based on what the memory controller would see. When the

processor executes a store instruction, a read transaction is issued to obtain exclusive

ownership (aka Read-For-Ownership (RFO) transaction) of the line. The store data is

merged with the line that is read and kept in the cache and later the modified line is

evicted and written back to memory. Thus, the store instruction translates into one read

and one write as seen by the memory controller. Based on this, MLC would load 2 cache

lines and store to one cache line to get 3 reads and 1 write at the memory controller when

-W3 option is used. The final b/w reported by MLC would include the sum of read and

write b/w as seen by the memory controller. Please note that this is an estimation of the

traffic as seen by the memory controller as MLC does not have any visibility into

functioning of the memory controller.

6.3 Measuring Loaded Latency

One of the main features of Intel® MLC is measuring how latency changes as b/w

demand increases. To facilitate this, MLC creates several threads where the number of

threads matches the number of logical CPUs minus 1. These threads are used to generate

the bandwidth. The primary purpose of the bandwidth-generation threads is to generate as

many memory references as possible. While the system is loaded like this, the remaining

one CPU (that is not being used for load generation) runs a thread that is used to measure

the latency. This thread, which typically runs on cpu#0, is known as the latency thread

and issues dependent reads as described in section 6.1. Depending on the load generated

by the bandwidth-generation threads, this latency will vary as there may be more

queueing for resources at various points. Once every few seconds the bandwidth-

generation threads automatically throttle the bandwidth generated by injecting delays,

thus measuring the latency under various load conditions. By default, h/w prefetchers on

the core running the latency thread are disabled as the latency thread does sequential

accesses. But prefetchers are enabled on cores generating the bandwidth. Please note that

the b/w reported by MLC would also include the b/w from the latency thread in all

cases.

By default, we pin each load-generation thread to one logical cpu. For example, on a

system with 10-cores with hyper-threading enabled, MLC will create 18 bandwidth-

 9

generation threads and reserving physical core 0 for running latency thread. Each

bandwidth generation thread can be configured to generate varying degrees of reads and

writes to the cache hierarchy. Each of these threads allocates a buffer for reads and a

separate buffer for writes (there is no sharing of data between any of the threads). By

appropriately sizing the buffers, one can ensure that the references are satisfied at any

particular cache level or serviced by memory.

There are several options to control the number of bandwidth generation threads, the size

of buffers allocated for each of them, where they allocate their memory, ratio of reads to

writes and whether the accesses are sequential or random.

6.4 Measuring Cache-to-cache Transfer Latency

MLC supports measuring cache-to-cache transfer latencies. The basic idea is to bring in

lines into L1/L2/L3 and then transfer control to another thread (which is either running on

another core on the same socket or a different socket). This thread will read the same data

and this will force cache-to-cache transfers from the cache that already has these lines.

We can measure both Hit (hitting clean lines) and HitM (hitting lines in modified state)

latencies by manipulating the initial thread to either just read the data into clean state or

modify the data and keep it in M state. MLC supports several parameters for finer

control.

7 Command line parameters
Launching Intel® MLC without any parameters measures several things as stated earlier.

However, with command line arguments, each of the following specific actions can be

performed:

mlc --latency_matrix

 Prints a matrix of local and cross-socket memory latencies

mlc --bandwidth_matrix

Prints a matrix of local and cross-socket memory b/w

mlc --peak_injection_bandwidth

Prints peak memory b/w (core generates requests at fastest possible rate) for

various read-write ratios with all local accesses

mlc --max_bandwidth

Prints maximum memory b/w (by automatically varying load injection rates) for

various read-write ratios with all local accesses

mlc --idle_latency

Prints the idle memory latency of the platform

mlc --loaded_latency

Prints the loaded memory latency of the platform

 10

mlc --c2c_latency

 Prints the hit/hitm latency of the platform

With the addition of –e flag as shown below, Intel® MLC will not modify the h/w

prefetchers for any of the measurements.

mlc -e

Do not modify prefetcher settings

With –e flag, it is better to have –r also added (as shown below) so latency measurements

can be done with random accesses to beat the h/w prefetchers

mlc –e -r

With the addition of –X flag, only 1 hyper-thread per core will be used for all bandwidth

measurements

mlc -X

Use only 1 hyper-thread per core for bandwidth measurements. Otherwise all

threads in the core will be used for bandwidth measurements

More parameters can be passed to customize the actions performed as listed below:

mlc --idle_latency [-bn] [-tn] [-xn] [-ln] [-r] [-L|-h]] [-cn] [-in] [-jn] [-Jn] [-pn] [-Dn]

[-e]

mlc --latency_matrix [-bn] [-tn] [-xn] [-ln] [-Dn] [-r] [-L|-h] [-e] [-a] [-X]

mlc --bandwidth_matrix [-bn] [-tn] [-ln] [-L|-h] [-R] [-Wn] [-e] [-X] [-Y] [-Z] [-Mn]

mlc --peak_injection_bandwidth [-bn] [-tn] [-ln] [-L|-h] [-mn|-kn] [-e] [-X] [-Y] [-Z] [-

Mn]

mlc --max_bandwidth [-bn] [-tn] [-ln] [-L|-h] [-mn|-kn] [-e] [-X] [-Y] [-Z] [-Mn]

mlc --loaded_latency [-bn] [-cn] [-tn] [-ln] [-in] [-L|-h] [-R] [-Wn] [-mn|-kn] [-r] [-Dn]

[-g<filename>] [-T] [-dn] [-e] [-o<filename] [-jn] [-nn] [-U] [-X] [-B] [-Y] [-Z] [-

M<filename>] [-P] [-Q] [-Kn]

mlc --c2c_latency [-bn] [-cn] [-Cn] [-Dn] {-En] [-Gn] [-H] [-in] [-L] [-r] [-Sn] [-wn] [-

xn]

Detailed descriptions for each of the arguments are provided below:

-a Measure idle latencies from each of the available CPUs. This option is valid only in

latency_matrix mode.

-b Select the size of the buffer (in KB) to be allocated by each CPU. Default is 200,000

KB for latency measurements and 100,000 KB for b/w measurements. In case of b/w

measurements with both read and write traffic, same size buffer will be allocated

once for reads and once for writes thus requiring twice the amount of memory. This

 11

option is valid in all modes. The buffer size can also be specified with a suffix of m or g

(like –b2g or –b10m)

-B Print per-thread bandwidth numbers. Default is to print the total b/w generated across

all the threads only. This option is valid only in loaded_latency mode.

-c Pin the latency-measuring thread to a particular CPU. All memory accesses will be

initiated from this CPU irrespective of where the memory that is being addressed is

located. This option is valid in idle_latency, loaded_latency and c2c_latency modes.

-C Specify the window size in KB for cache-to-cache transfer latency (default is 2,000

KB). This option is valid only in c2c_latency mode.

-d Specify load injection delay. This option selects the number of cycles of delay that

will be injected between bursts of memory accesses to throttle the b/w generated. When

this option is not specified, once every few seconds (as specified by –t option) this value

will be automatically changed and data gathered. However, you may want to determine

latency for a particular b/w value. By trying different values for this parameter, b/w that

is close to what is desired can be generated. When this option is specified, the program

will measure latency for only one b/w. A value of 0 for –d may provide maximum

throughput. The throughput generally drops as this value is increased. At very high delay

values (like 30,000), the system can almost be considered as idle and the latency would

be very close to idle latencies. This option is valid in loaded_latency mode only.

-D Specify a maximum value for the random numbers that will be used in generating

accesses in latency thread. For example, if a value of 8192 is specified, random numbers

in the range of 1-8192 will be used. The randomization is not done over the entire buffer

(-b size) to minimize the TLB misses. Instead, the entire buffer is divided into multiple

blocks (each block will have –D number of cache lines) and then accesses will be

randomized within each block. Once all the lines in a block have been accessed, the same

process will be repeated for the next block and so on. This option is valid in idle_latency,

latency_matrix, loaded_latency and c2c_latency modes.

-e Do not modify the h/w prefetcher settings. H/W prefetcher settings are left

unmodified. If this option is not specified, the tool will automatically change the

prefetcher settings appropriately for various measurements. This option is valid in all

modes.

-E read extra n KB lines in writer thread in c2c_latency (default=0). This is used to

force the lines out of either L1 or L2 into lower level caches (like L3). This option is

valid only for c2c_latency mode.

-g Specify the input file name with delays to inject for measuring latencies under

different load levels. This file can specify many inject-delay values (one per line). If this

option is not specified, a default list of values that are hard coded into the program is

used. The default list has the following values {0, 2, 8, 15, 50, 100, 200, 300, 400, 500,

 12

700, 1000, 1300, 1700, 2500, 3500, 5000, 9000, 20000}. Each value specifies the number

of cycles the bandwidth generator thread will spin in a busy loop between a burst of

transactions. This reduces the total b/w generated and enables gathering latencies under

various load conditions. This option is valid only in loaded_latency mode.

-G Specify the buffer size in kB for extra reads in reader thread in c2c_latency mode

-h Allocate buffers using 1GB huge pages. On Linux, you need to allocate 1GB pages

with /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages

-H Measure clean line hit latency in c2c_latency mode. Without this flag, the default

setting measures Hit-modified latency.

-i Select on which CPU the requested memory will reside for the latency measuring

thread. It identifies the logical CPU that will allocate the memory and initialize it. The

thread that is allocating the memory will pin itself to this CPU, allocate the memory and

do a first ‘touch’ of that memory. In loaded_latency mode, you can also use per-thread-

config file with –o option to control where memory will be allocated. This option is valid

in idle_latency, loaded_latency and c2c_latency modes.

-j Allocate memory from the specified numa node. If this option is selected, -J or –i

parameter should not be selected. This option is valid in idle_latency and loaded_latency

modes.

-J Specify a directory in which files for mmap will be created. This option relies on

using file system mounted on persistent memory. This option is valid only in idle_latency

mode.

-k Specify a list of cpu numbers to be used for measurements. The cpu# can be a range

separated by a hyphen, for example, “-k4-8” means logical cpu#s 4,5,6,7,8 are to be used.

Comma separation is also supported, for example, “-k4-8,12-16,18” means cpus

4,5,6,7,8,12,13,14,15,16,18 are to be used. This option is valid only in

peak_injection_bandwidth, max_bandwidth and loaded_latency modes.

-K Specify finer control over whether all 64 bytes of a cache line are accessed during

loads/stores. Typically, more instructions need to be executed to access all the bytes of a

cache line. For example, to load a 64B line, you need to execute 4 SSE instructions where

each instruction loads 16 bytes. With AVX2 instructions that load 32 bytes at a time, 2

instructions are executed to load the full cache line. However, to measure cache or

memory b/w, there is no reason to load entire line as even partial line access would bring

the entire line into cache. Loading the entire line measures the core execution b/w while

partial loads (i.e loading just 16 bytes of the line) are sufficient to measure cache b/w. By

default for buffer sizes < 50MB, this tool would automatically use partial loads/stores. If

a value of 1 is specified for this option, only partial loads/stores would be used

irrespective of the buffer size. However, if 0 is specified, full line would be accessed in

all cases. This option is applicable only for 64 byte stride and 100% read, W2, W3 and

 13

W5 traffic types. This option is valid only in peak_injection_bandwidth, max_bandwidth

and loaded_latency modes.

-l Set the stride size in bytes. Default is 64 bytes. This option is valid in all modes

except c2c_latency.

-L Allocate the buffer using the hugetlbfs interface. In case of Windows o/s, large pages

should be enabled appropriately. The system should have already reserved enough 2MB

pages to satisfy the allocation request. This option is valid in all modes except

c2c_latency.

-m Specify the mask value (in hex) of CPUs to run the bandwidth generation threads.

Only either –k or –m can be used and not both. CPU 0 should be excluded from this mask

as it is used to run the latency measuring thread. If Intel® Hyper-Threading Technology

is enabled, the other CPU that is part of physical core 0 should also be omitted from this

mask. The –m mask can include CPU 0 only if latency is not being measured by

specifying –T option. For example, on a system with 8 logical processors, a mask –mfe

will select all but CPU 0. Each bit set refers to the CPU number on which a bandwidth

generation thread will be launched. If we want to run the bandwidth generation thread

only on CPU 7 (counting from zero), then the mask would be –m80. This option is valid

only in loaded_latency mode.

-M By default, MLC initializes buffers by writing increasing integer numbers to each

line. If there is a need to initialize the buffers/memory with specific patterns, this option

can be used. A pattern input file can be provided that has an entire cache line in hex form.

There can be up to 8 such lines in the file. MLC will initialize the first 8 64-byte lines of

the buffer allocated with data that is provided in the pattern input file. 8 is the maximum

number of lines supported in the file. Then, the same will be repeated in sequence for all

the memory allocated by MLC. Refer to section 8.7.21for more details.

-n Specify the maximum random number to be used in random access bandwidth

generation. This option is valid only if specified along with –U option. For example, if a

value of 8192 is specified, random numbers in the range of 1-8192 will be used. The

randomization is not done over the entire buffer (-b size) to minimize the TLB misses.

Instead, the entire buffer is divided into multiple blocks (each block will have –n number

of cache lines) and then accesses will be randomized within each block. Once all the lines

in a block have been accessed, the same process will be repeated for the next block and

so on. This option is valid only in loaded_latency mode.

-o Specify input file with options for per-thread controls during bandwidth

measurements (supported only for loaded_latency mode). This provides fine grained

control as to how each hardware thread should use memory during bandwidth

measurements. For example, we may want a set of threads to be reading from DRAM and

a set of threads to be writing to persistent memory. This can be specified in the input file.

The control parameters specified by the user in the input file override the defaults

 14

assumed by the tool. Each line in the file has several fields separated by <space>. If any

line starts with ‘#’, then that line will be considered as a comment and ignored.

 <cpu-range> <traffic-type> <seq/random> <buf size in KB> <dram/pmem> <node-

id/pmem-folder-path> <per-thread-delay>

The 1st field specifies the cpu-range. The remaining fields are control parameters to be

applied to the cpu(s) specified by the 1st field.

<cpu-range>: The setting for the control parameters on each line can be for a

single logical cpu# (hw thread) or a list of numbers separated by comma including

a range specified by a dash between two numbers. If we need to apply the same

setting for all 32 cores in a system, 0-31 can be used, instead of creating an entry

for each of the cpu#s from 0 to 31. No blank is allowed. For example,

1-3,6,10-12 : logical cpu# 1 to 3, 6, and 10 to 12 all will have the same setting

6-12,20-22 : logical cpu# 6 to 12 and 20 to 22 all will have the same setting

<traffic-type>: specifies the traffic type used by threads in <cpu_range>. Traffic

types ‘R’ or ‘Wx’ (where x can take values defined in detail under –W option)

can be specified.

<seq/rand>: specifies whether sequential or random traversal pattern is to be used

by threads defined in <cpu_range>. Allowed values are ‘seq’ or ‘rand’

<buf size in KB> : specifies buffer size in KB to be allocated by each thread in

<cpu_range>; k,m,g suffix can be provided as in 100k, 200m, 50g etc.

<dram/pmem>: specifies where each thread in <cpu_range> allocates memory (in

regular dram or persistent memory). Allowed values are either ‘dram’ or ‘pmem’

<node-id/pmem-folder-path>: This field is optional when the previous field is

selected as ‘dram’. When this field is present, it can either be a number or a string.

If the previous field is ‘dram’, then this field will be a number indicating the numa

node# from where memory will be allocated. If the previous field is ‘pmem’, then

this field specifies the path that points to a folder where file mapping to persistent

memory is present. So for example, if in a 2S 32 cpu system, we want 1 socket to

have random reads that go to local memory (numa node 0) and 1 socket to have 2

reads and 1 write traffic to numa node 1, the file would contain

0-7,16-23 R rand 30000 dram 0

8-15,24-31 W6 seq 30000 dram 1

< per-thread-delay >: This field is optional. However, if this field is specified,

the previous field < node-id/pmem-folder-path > should be present too. With this

field we can specify load injection delays on a per-thread basis. Otherwise, option

–d in the command line would define the same load injection delays for all the

threads.

 15

Typically, each bandwidth generation thread allocates memory from a single numa node.

However, we can also configure a thread to load from two different address regions

(either two numa nodes with dram or two persistent memory regions or a combination of

dram and persistent memory). The format is as follows

<cpu-range> <traffic-type-2> <seq/random> <buf size in KB> <dram-1/pmem-1>

<node-id/pmem-folder-path> <dram-2/pmem-2> <node-id/pmem-folder-path> <addr-

mix-ratio>

<traffic-type-2>: Only a few traffic types are supported in this option and those

can only take one of the following values

 W21 : 100% reads (similar to –R)

 W23 : 3 reads and 1 write (similar to –W3)

 W27 : 2 reads and 1 non-temporal write (similar to –W7)

<dram-1/pmem-1> <node-id/pmem-folder-path>: Provide either dram and

nodeid or pmem and the folder path for the 1st address stream

<dram-2/pmem-2> <node-id/pmem-folder-path>: Provide either dram and

nodeid or pmem and the folder path for the 2nd address stream

< addr-mix-ratio >: This is a decimal number which specifies how many accesses would

go to the 2nd address stream out of a total of 100 accesses. Currently, this can only take a

value of 10, 25 or 50. 10 means out of 100 addresses generated, 90 would target

<dram1/pmem1> while only 10 would address <dram2/pmem2>. For a value of 25, out

of 100 addresses generated, 75 would target dram1/pmem1 while only 25 would target

dram2/pmem2. <per-thread-delay> is not supported in this two address mix option.

Also, value 50 is supported only for –W21 (100% reads).

The following is an example of each thread accessing data from two different address

streams. Threads 0 to 2 allocate buffers from dram on numa node 2 and from persistent

memory file in folder at /mnt/pmem1. The traffic type is 100% reads. The accesses are

interleaved at a ratio of 3:1. That is 75 accesses would go to dram and remaining 25

accesses go to /mnt/pmem1. The 2nd line below selects a traffic type where 2 reads and 1

non-temporal write would be generated. The addresses are interleaved between dram and

pmem at a ratio of 9:1.

0-2 W21 seq 30000 dram 2 pmem /mnt/pmem1 25

30-32 W27 seq 60000 dram 1 pmem /mnt/pmem2 10

-pn1,n2,n3,.. Specify a core number on each socket (in the form of comma separated

CPU numbers) where a dummy thread is executed to keep that CPU 100% active. The

dummy thread executes yield() system call in a loop. Since current generation processors

support aggressive power management, sockets with all idle cores operate at a low

frequency to save power. This results in higher latencies for snoop responses. So while

 16

measuring latencies, at least one CPU in each socket should be kept 100% busy. When

this parameter is not specified, a dummy thread is automatically launched on the first cpu

in each socket for latency measurements. This option is valid in idle_latency mode only.

-P Execute CLFLUSHOPT instruction after any stores to addresses in persistent

memory region. If stores are not flushed immediately, they may be evicted from the last

level cache in any order and that may not provide the most optimal b/w. When this option

is specified, each store is followed by a clflushopt instruction to evict the line to

persistent memory. This option is valid only in AVX512 mode which requires the

specification of –Z option as well.

-Q Execute CLFLUSHOPT instruction after any stores to any addresses. This option is

similar to the previous option (-P) but applies to all address range and not persistent

memory range only. This option is valid only in AVX512 mode which requires the

specification of –Z option as well.

-r Initialize the buffer (used by latency thread) with pseudo-random values so the access

pattern to memory will be random for latency measurement. For random access in load-

generation threads, use option –U. This option is valid in idle_latency, latency_matrix

and loaded_latency modes.

-R Select 100% read traffic. If this option is specified –W should not be used. This

option is valid in bandwidth_matrix and loaded_latency modes.

-S Specify the cpu id to pin the 3rd thread in cache-to-cache transfer latency

measurement. Please see example 8.8.4. This option is valid only in c2c_latency mode.

-t Set time in seconds during which each measurement is captured. Default is 2 seconds.

This option is valid in all modes except c2c_latency

-T Specify this flag if only b/w is desired without latency values. If this is selected, then

the –m option can have a mask value covering all available CPUs including 0. Similarly,

if –k is specified, it can include cpu# 0 in the cpu range. This option is valid only in

loaded_latency mode.

-u Specify this flag when L3 cache b/w measurement is needed. With this flag, each b/w

generation thread shares the same buffer and does not allocate its own. Due to shared

data, there is no write-back of clean lines from L2 to L3 thus allowing only real read

traffic from L3 to be measured. This option is valid in loaded_latency mode

-U Specify this flag to enable random access for bandwidth generation threads (default:

off, only sequential access). This means that the threads generating the traffic that are

used for bandwidth measurements access memory with “randomness” – i.e. they do not

sequentially stride through memory when this flag is specified. Use –n flag along with

this to specify the level of randomness. This option is valid only in loaded_latency mode.

 17

-v Specify this flag to print the verbose output: additional details about what MLC is

doing behind the scenes. This is useful for debugging. This option is valid in all modes.

-w Specify the cpu id to pin hit/hitm writer thread. This option is valid only in

c2c_latency mode.

-W Specify read to write ratio for the b/w generation thread in bandwidth_matrix and

loaded_latency modes . –Wn where n can take the following values (reads and writes are

as observed on the memory controller): The last 3 values (21, 23 and 27) can only be

specified in the per-thread-config file as part of –o option

 2 - 2 reads and 1 write

 3 - 3 reads and 1 write

 5 - 1 read and 1 write

 6 – 100% non-temporal write

 7 - 2 reads and 1 non-temporal write

 8 - 1 read and 1 non-temporal write

 9 - 3 reads and 1 non-temporal write

10 - 2 reads and 1 non-temporal write (similar to stream triad)

(same as -W7 but the 2 reads are from 2 different buffers while those 2

reads are from a single buffer on –W7)

11 - 3 reads and 1 write

(same as –W3 but the 2 reads are from 2 different buffers while those 2

reads are from a single buffer on –W3)

12 - 4 reads and 1 write

21 – 2 address streams - 100% reads

23 – 2 address streams - 3 reads and 1 write

27 – 2 address streams - 2 reads and 1 non-temporal write

-x Set the number of iterations in millions. If this option is specified, then –t should not

be specified. A value of 0 (-x0) will perform only one iteration over the buffer allocated.

This option is valid in idle_latency, latency_matrix and loaded_latency modes.

-X Specify this flag to use only 1 hyper-thread per core for bandwidth measurements.

When this flag is specified, MLC picks the first hyper-thread id out of all the

hyperthreads of each core to run the bandwidth thread. The other hyperthread(s) of the

cores will not be used to run anything. In many cases, this gives higher bandwidth when

compared to running traffic on all the hyperthreads of each core. If this flag is specified

as part of latency_matrix(with –a option), then only one thread from each of the cores

will be used for latency measurements. This option is valid in latency_matrix,

peak_injection_bandwidth, max_bandwidth, bandwidth _matrix and loaded_latency

modes.

-Y Specify this flag to use AVX2 load and store instructions for generating the traffic.

This option is valid in bandwidth_matrix, max_bandwidth, peak_injection_bandwidth

and loaded_latency modes only. By default, only SSE2 (128-bit loads/stores) instructions

are used.

 18

-Z Specify this flag to use AVX-512 load and store instructions for generating the

traffic. This option is valid in bandwidth_matrix, max_bandwidth,

peak_injection_bandwidth and loaded_latency modes only. By default, only SSE2 (128-

bit loads/stores) instructions are used.

8 Example usages

8.1 Collecting all latencies and bandwidth data

8.1.1 Default invocation

mlc

When MLC is invoked without additional arguments, all the modes (latency and b/w

matrix, peak b/w and loaded latencies) are automatically executed

8.1.2 Running MLC without root privileges

mlc –e -r

Since MSR accesses are privileged operations, users who don’t have root access won’t be

able to disable h/w prefetchers for latency measurements. When MLC detects this

scenario, it will automatically proceed as if –e & -r options are specified along with a

warning message. –e flag can also be explicitly specified to prevent the tool from

attempting to modify the h/w prefetcher settings.

The above command will run all measurements without modifying the prefetchers.

-e flag can also be specified for any specific measurement as shown below. –r command

will ensure random accesses are used for latency measurements

mlc --bandwidth_matrix –e

mlc --peak_injection_bandwidth –e

8.1.3 Using only one hyper-thread from each core

mlc -X

By default, MLC will use all the hyper-threads from each core for all b/w measurements.

However, with higher core count processors, it is likely that the best b/w may be obtained

by using only one hyper-thread from each core. –X option can also be used with other

modes of operation as shown below

mlc --bandwidth_matrix –X

mlc --peak_injection_bandwidth –X

mlc --peak_max_bandwidth –X

mlc --loaded_latency –X

 19

8.2 Measuring Idle latency

8.2.1 Measuring local memory latency from a specific CPU

mlc --idle_latency –c4 –i4

This command measures local memory latency from CPU 4. The –i parameter specifies a

CPU that resides on the same socket. A dummy thread is launched on the 1st cpu on each

of the sockets to keep at least one core in each socket active. This prevents the socket

from going into low frequency and delaying snoop responses. By default, 64-byte

sequential stride is used.

8.2.2 Measuring remote memory latency from a specific CPU

mlc --idle_latency –c0 –i8

The above command allocates a buffer with a default size of 200 Mbytes on CPU 8 and

initializes the entire buffer. This ensures that all the memory for this buffer is allocated

from memory that is present on the same socket as CPU 8. Then requests are generated

by a thread running on CPU 0 to access this memory. This test will run for 2 seconds and

the average latency measured will be reported. A dummy thread is automatically

launched on the 1st cpu on each of the sockets to keep at least one core in each socket

active.

8.2.3 Measuring latencies with different stride length

mlc --idle_latency –c4 –i4 –l256

This command measures local memory latency by using 256 byte stride instead of 64

byte stride.

8.2.4 Measuring cache hit latency

mlc --idle_latency –b3000 –c0 –t3

This command measures the L3 cache hit latency. Since the buffer allocated is only 3MB

in size, repeated accesses to the same buffer ensures that all the lines in this buffer will

reside in L3 cache (assuming the L3 size is more than 3MB). So, the latency measured

would represent the cache hit latency.

8.2.5 Measuring latencies using fixed number of requests

mlc --idle_latency –x10

This command allocates a buffer with a default size of 200 MBytes by pinning to cpu# 1

(default) and executes 10 million references to memory and measures the average latency

instead of running for a fixed amount of time. The special case for this (using only 1

iteration over the buffer) is –x0 and this can be useful for scenarios where we want the

memory to be “accessed” only once (for example, while testing scenarios involving

directory state – where state will change after the very first access).

 20

8.2.6 Measuring idle latency to a specific NUMA node

mlc --idle_latency –c0 –j3

This command measures the idle latency from cpu# 0 to memory on numa node# 3. Note

that numa node 3 may be a regular node (with CPU resources) or it may be a memory-

only node with no CPU resources.

8.2.7 Measuring idle latency with random access

mlc --idle_latency –c0 –r –D8192

MLC disables h/w prefetchers and does sequential 64-byte accesses to measure latencies.

However, if you are unable to run MLC with root privileges (as controlling h/w

prefetchers require MSR write access), you can run MLC with –e option. But h/w

prefetchers will lower the latencies reported due to sequential access. In that case, -r

option can be used to force random accesses. To reduce TLB misses, random access over

entire buffer size is not done. Instead, the buffer is divided into multiple blocks (each is

sized to –D times 64 bytes) and all the lines in each block are first randomly accessed and

after accessing all the lines in that block, the same is repeated for the remaining blocks.

The default value for –D is 4096.

8.2.8 Measuring idle latency to persistent memory

mlc --idle_latency –c0 –J<path>

MLC can measure read latencies to persistent memory by providing a path name to the

file system.

The first step is to expose the non-volatile memory (NVDIMM) to the OS. The BIOS

describes the NVDIMM configuration to the OS via the ACPI-defined NVDIMM

Firmware Interface Table (NFIT). Thus it is necessary to use a NFIT kernel, where the

kernel is compiled with CONFIG_ACPI_NFIT enabled. Checking "ls

/sys/firmware/acpi/tables/" can confirm the presence of an NFIT table. Upon detection of

an NFIT table, the NVDIMM driver (pmem driver) is automatically loaded. For

applications to directly access persistent memory utilizing a standard byte addressable

load/store interface, the NVDIMM driver exposes the persistent memory through a

persistent memory-aware file system. For example, let’s say the persistent memory

region is /dev/pmem0, it can be mounted as follows:

mkdir /mnt/pmem0

mkfs.ext4 /dev/pmem0

mount –o dax /dev/pmem0 /mnt/pmem0

mlc --idle_latency –c0 –J/mnt/pmem0

A file can now be created in /mnt/pmem0, mapped with mmap() and accessed with

load/store references. The path /mnt/pmem0 would also be the path that we pass to MLC

for measuring latency to that region of persistent memory. Note that multiple persistent

 21

memory pools can be configured in the BIOS using different sizes, from different

DIMMs, with different interleaving options, etc. In such a case, multiple regions

(/dev/pmem0, /dev/pmem1, etc) would show up when we use a NFIT kernel – and the

procedure above can be used to create multiple mount points/files.

8.3 Measuring Latency Matrix

8.3.1 Default invocation

mlc --latency_matrix

The default invocation as specified above measures idle memory latency from each

socket to every other socket in the system and reports the results in a matrix form. Note

that the default invocation reports latencies to all the NUMA nodes in the system. For

example, in a system with 3 NUMA (memory) nodes and with two of them having CPU

resources, the tool will report a matrix as follows:

8.3.2 Measuring latencies on all the cpus

mlc --latency_matrix –a

When –a option is specified, latencies will be measured from every core on the socket to

memory on all the numa nodes.

8.4 Measuring Bandwidth Matrix

8.4.1 Default invocation

mlc --bandwidth_matrix

The default invocation as specified above measures the b/w available from each socket to

every other socket in the system and reports the results in a matrix form. The traffic

generated would be 100% reads in this example.

8.4.2 Measuring b/w matrix with different read/write ratios

mlc --bandwidth_matrix –W3

Instead of generating 100% reads as in the default case, -W3 will select 3 reads and 1

write to memory. The following are the possible options for –Wn where n can take the

following values (reads and writes are as observed on the memory controller):

 2 - 2 reads and 1 write

 22

 3 - 3 reads and 1 write

 5 - 1 read and 1 write

 6 – 100% non-temporal write

 7 - 2 reads and 1 non-temporal write

 8 - 1 read and 1 non-temporal write

 9 - 3 reads and 1 non-temporal write

10 - 2 reads and 1 non-temporal write (similar to stream triad)

(same as -W7 but the 2 reads are from 2 different buffers while those 2

reads are from a single buffer on –W7)

11 - 3 reads and 1 write

(same as –W3 but the 2 reads are from 2 different buffers while those 2

reads are from a single buffer on –W3)

12 - 4 reads and 1 write

For 100% reads, specify –R instead of –W option.

8.4.3 Using AVX 256-bit or 512-bit loads/stores

mlc --bandwidth_matrix –Y

mlc --bandwidth_matrix –Z

By default, MLC uses only 16 byte load/stores instructions to generate the b/w. However,

if your processor supports 256-bit AVX load/store instructions, they you can append –Y

option. Even better b/w may be obtained with –Z option if your processor supports

AVX512 instructions.

8.5 Measuring Peak Injection Bandwidth

Peak injection bandwidth is measured by generating requests from the core at the fastest

possible rate. Sometimes, this may not be the maximum b/w that is achievable due to

other limitations. Use --max_bandwidth option if you want to measure maximum b/w

8.5.1 Default invocation

mlc --peak_injection_bandwidth

The default invocation as specified above measures total b/w using several different

read/write ratios. A default buffer size of 100 MB (each for read and write) is allocated

on each of the available CPUs for the measurement.

8.5.2 Using AVX 256-bit or 512-bit loads/stores

mlc --peak_injection_bandwidth –Y

mlc --peak_injection_bandwidth –Z

For best results, use –Y or –Z option.

8.5.3 Measuring peak b/w for a subset of CPUs

mlc --peak_injection_bandwidth –mff

 23

This command uses CPUs 0-7 and measures memory b/w available from those cores.

8.5.4 Measuring peak cache b/w

mlc --peak_injection_bandwidth –b100

This command measures the sum of L2 cache b/w available across all CPUs in the

system. Here it is assumed that L1 cache size is < 100KB while L2 cache size is >

100KB. Then all the references will hit in L2 cache, thus providing L2 cache b/w

aggregated across all the cores.

8.5.5 Measuring peak b/w with only one thread from each core

mlc --peak_injection_bandwidth –b100 –X

This command uses only one thread from each core (instead of all the available hyper

threads on that core) to generate the b/w. On processors with 8 or more cores per socket,

it is likely that best b/w may be achieved when only one hyper-thread from each core is

utilized to generate the b/w.

8.6 Measuring Maximum Bandwidth

Typically, peak_injection_bandwidth may also be the maximum possible bandwidth.

However, there may be some bandwidth drop at the highest possible injection rate. With

max_bandwidth option, different injection rates are automatically tried to arrive at the

maximum possible bandwidth. The parameters supported in this option are exactly the

same as in --peak_injection_bandwidth. Please refer to previous section for more details.

8.7 Measuring Loaded latencies

8.7.1 Default invocation

mlc --loaded_latency

The above command line starts bandwidth generation threads on all the available CPUs

except on 0 where the latency thread is started. If Intel Hyper-Threading Technology is

enabled, then the other thread on core 0 is also avoided for load generation. The load

injection delays are automatically changed every 2 seconds and b/w and latency

measured at that level are reported. 100% read traffic is used for this measurement.

Sample output for the above command follows:

Inject Latency Bandwidth

Delay (ns) MB/sec

==========================

 00000 196.54 76701.3

 00002 196.13 76784.2

 00008 196.14 77053.2

…….

 24

 09000 71.74 2206.4

 20000 71.32 1489.7

Data in the 1st column provide load injection delay values (basically number of cycles)

used. The 2nd column provides the latency values in nanoseconds for the measured b/w

reported in the 3rd column. Data in the 1st column are for informational purposes only.

8.7.2 Measuring loaded latencies for different read/write ratios

mlc --loaded_latency –W2

This command is similar to the previous one except that loaded latencies are measured

for 2:1 read/write traffic. All possible values for –W option are specified in section 7

8.7.3 Measuring each B/W data points for specified duration

mlc --loaded_latency –t10

This command executes each of the injection points for 10 seconds and outputs b/w and

latencies measured over that interval. The default value for –t is 2 seconds.

8.7.4 Measuring total b/w without latency

mlc --loaded_latency –W2 –d0 –T

This command measures total b/w for 2:1 read/write traffic with an injection delay of 0

cycles. –T ensures that b/w generation thread will run on cpu#0 also instead of the

latency thread. Since there is no injection delay, this is likely to provide the maximum

b/w available

Inject Latency Bandwidth

Delay (ns) MB/sec

==========================

 00000 0.00 69390.6

8.7.5 Measuring b/w available for a subset of CPUs

mlc --loaded_latency -W2 –d0 –T –mff

or

mlc --loaded_latency -W2 –d0 –T –k0-7

In the first illustration, the mask “ff” is used with –m to specify a bit mask of CPUs to be

used. In this case, ff indicates eight ones, which corresponds to a one for each of the first

eight CPUs. In other words, only CPUs 0-7 are being used to generate the b/w

An alternate means to do this is by using the –k flag instead of –m as shown above.

 25

8.7.6 Measuring latency for a particular b/w

mlc --loaded_latency –d1000

B/W can be throttled by specifying a particular value for the –d option. In this case, 1000

cycles of delay is introduced between bursts of memory requests. Though there is no

direct way of specifying or knowing the b/w that would be generated ahead of time, this

option provides a simple but iterative way to arrive at the b/w of interest by trying

different values of -d

Inject Latency Bandwidth

Delay (ns) MB/sec

==========================
1000 79.14 12363.3

8.7.7 Measuring latencies for specified load delay injection levels

mlc --loaded_latency –gdelay.txt

Default runs use a predefined set of load injection delays to generate latency vs. b/w

values for different injection levels. However, the user can customize the injection values

by providing an input file with those values (each injection value can be specified as a

decimal number with one value per line in a text file, identifying the name of that input

file through the –g option). For the data shown below, the input file delay.txt contained 3

lines with values 100, 800 and 4000

Inject Latency Bandwidth

Delay (ns) MB/sec

==========================

 00100 167.19 76958.8

 00800 81.47 15132.2

 04000 72.90 3824.4

8.7.8 Measuring latencies with random access

mlc --loaded_latency –r

By default, the latency thread is doing sequential 64-byte access. With this –r option, the

latency thread does random accesses. This can reduce memory page hits and increase

latency. The bandwidth generation threads always do sequential access only, unless –U

and –n are specified (only supported for limited traffic types).

8.7.9 Measuring latencies with random access within specified
window for randomness

mlc --loaded_latency –r –D8192

By default, the random accesses for the latency thread are within a 4096 cache line

window (if –D is not specified). Specifying a value for –D can change the size of the

window. Note that a very large window can have implications on TLB misses.

 26

8.7.10 Measuring b/w for cache hierarchies

mlc --loaded_latency –b100 –T –K1

By selecting an appropriate value for the buffer size (-b option), we can measure b/w and

latencies for any cache level. In the example above, a buffer size of 100 KB is specified.

This buffer can fit within L2 cache and thus provide b/w and latencies for that level. All

options that are applicable for measuring memory traffic (like read/write ratio, delay

values) are also available irrespective of the buffer size. For best b/w measurements, -K1

option is specified wherein only partial loads/stores are executed (ie. only one 16 byte

load/store per cache line). Using –K0 would force loads/stores to entire 64-byte line and

likely reduce the b/w.

8.7.11 Measuring b/w for non-inclusive L3 cache

mlc --loaded_latency –T –d0 –b6m -u

It is very difficult to measure L3 cache b/w, if each thread allocated its own buffer. As

the L2 cache is 1MB in Xeon server products (since Skylake server), each thread needs to

allocate a buffer much bigger than 1MB. But the L3 cache is only slightly larger than

1MB per core. Also, on non-inclusive L3 cache (as implemented on skylake server and

beyond), there is clean line eviction traffic from L2 to L3 cache. To make sure we

measure pure L3 to L2 fill traffic only, we provide an option (-u) to create a buffer which

is shared by all the threads. This ensures all the lines are in shared state in L3 cache with

no L2 to L3 line writeback. –u option enables sharing of the line. However, we can use

this technique only for 100% read traffic.

8.7.12 Measuring peak injection b/w with a mix of sequential and
random read-only traffic

mlc --loaded_latency –T –d0 –o<perthreadfile>

We can achieve a mix of traffic by appropriately specifying which threads have

sequential patterns and which threads have random patterns in perthreadfile. We use –T

to make the measurement throughput-only (no latency thread) and we use –d0 to collect

only the peak bandwidth measurement (no delay injection). Note that cpus not specified

in perthreadfile would not be used to generate b/w. Perthreadfile might look something

like this:

0-7 R rand 100000 dram

8-15 R seq 200m dram

This makes h/w threads 0 to 7 use random access patterns, and h/w threads 8 to 15 use

sequential access patterns. Since numa node# is not specified as a 6th parameter in these

lines, each thread will do local memory allocation. Buffer size parameter (4th field in the

perthreadfile can have k,m,g suffix to denote KiB, MiB or GiB respectively.

 27

8.7.13 Measuring latency and b/w with a mix of local and remote
traffic

mlc --loaded_latency –o<perthreadfile>

Through perthreadfile, each thread can be configured to get its memory from any of the

numa nodes. The latency thread which runs on cpu#0 can also be controlled as to where

the memory for latency thread will be allocated. A sample file is provided below. CPUs 0

to 3 allocate memory from numa node 1 and CPUs 4 to 7 allocate memory from numa

node 0. CPUs 8 to 15 allocate memory from numa node 0.

0-3 R seq 200000 dram 1

4-7 R seq 300000 dram 0

8-15 R seq 100000 dram 0

Note that cpus not specified in perthreadfile would not be used to generate b/w. Cpu#0 is

an exception and will always be used to measure latencies (-c option can be used to

change where latency thread runs). If cpu#0 is configured in this file, then buffer size and

memory location will be used as specified in the file (though traffic type will always be

100% read-only). If cpu#0 is not configured in this file, then by default, latency thread on

cpu0 will allocate 200MB buffer from local memory. If b/w generation is preferred on

cpu#0 as well, then –T option should be specified in which case no latency measurement

will take place.

8.7.14 Measuring b/w with mix of dram and persistent memory

mlc --loaded_latency –T –d0 –o<perthreadfile>

We can achieve a mix of traffic by appropriately specifying which threads access DRAM

and which threads access persistent memory in perthreadfile. We use –T to make the

measurement throughput-only (no latency thread) and we use –d0 to collect only the peak

injection bandwidth measurement (no delay injection). Assuming persistent memory is

mounted at two mount points: /mnt/pmfs1 and /mnt/pmfs2, perthreadfile may look

something like this:

0-3 R seq 100000 dram 0

4-7 R seq 100000 pmem /mnt/pmfs1

8-11 R seq 100000 dram 1

12-15 R seq 100000 pmem /mnt/pmfs2

This makes h/w threads 0 to 3 and 8 to 11 allocate memory from dram on node#0 and

node#1 respectively. H/W threads 4 to 7 and 12 to 15 allocate memory from persistent

memory mounted via mount points /mnt/pmfs1 and /mnt/pmfs2 respectively.

8.7.15 Measuring b/w with different injection delays

mlc --loaded_latency –T –o<perthreadfile>

 28

By default, all bandwidth generation threads run with the same injection delays.

However, if it is desired to have each thread run with different load injection delays,

those delays can be added at the end of each line in the perthreadfile as shown below

0-3 R seq 100000 dram 0 2000

4-7 R seq 100000 pmem /mnt/pmfs1 50

Here threads 0 to 3 would operate with load injection delays of 2000 while threads 4 to 7

would operate with load injection delays of 50.

8.7.16 Measuring two traffic streams from each thread

mlc --loaded_latency –T –o<perthreadfile>

By default, each bandwidth generation thread accesses only one region of memory (either

one NUMA node in dram or one persistent memory region). However, it may be desired

that each thread be able to access two regions in interleaved fashion to better simulate

real life usage models. We can configure perthreadfile to specify 2 regions of memory

along with the ratio between accesses as the last field in each line

0-3 W21 seq 100000 dram 0 dram 1 25

4-7 W21 seq 100000 dram 1 pmem /mnt/pmfs1 10

Here threads 0 to 3 would allocate buffers from both numa node 0 and numa node 1 and

the accesses would be interleaved on each of the threads. Out of 100 accesses on each

thread, 25 accesses would be to numa node 1 and remaining 75 would be to numa node 0.

Threads 4 to 7 would allocate buffers from both numa node 1 and persistent memory

region mapped to a file in folder /mnt/pmfs1 and the accesses would be interleaved. Out

of 100 accesses, 10 accesses would be to /mnt/pmfs1 and remaining 90 would be numa

node 1. Currently, only ratios 10, 25 and 50 are supported. Ratio 50 is supported only for

W21.

8.7.17 Measuring loaded latency with 1 Hyper-thread per core

mlc --loaded_latency –X

We can measure the loaded latency of a system using only 1 Hyper-thread per core for

generating the bandwidth. This is useful because in several processors with high core

count, the peak bandwidth is obtained when only 1 Hyper-thread per core is used.

Specifying the -X flag results in bandwidth threads being scheduled on only one of the

Hyper-threads in each core. In a 2-way SMT system, MLC uses only the first Hyper-

thread among the two Hyper-threads in each core to generate bandwidth traffic. The

second Hyper-thread is idle. In a 4-way SMT system (for example, Intel® Xeon® Phi®

processors), specifying –X results in the first Hyper-thread being used and the remaining

three Hyper-threads in the core being idle.

 29

8.7.18 Measuring bandwidth from a set of cores to memory on a
numa node

mlc --loaded_latency –k2-5,9-12,19,23-25 –j1 –T –d0

In this case, -k flag specifies the set of cores from which the threads measuring

bandwidth are to run, and –j flag specifies the numa node from which memory is to be

allocated for all the b/w generation threads. The list of numa nodes available in the

system can be viewed with “numactl --hardware”. So in the above scenario, we measure

the bandwidth from cores 2,3,4,5,9,10,11,12,19,23,24,25 to memory on numa node 1.

8.7.19 Measuring bandwidth with threads that do random
accesses

mlc --loaded_latency –T –d0 –U

By default, the threads that generate the traffic for bandwidth measurements have only

sequential accesses. For example “mlc --loaded_latency –T –d0” gives the peak

bandwidth for read-only traffic. Adding the –U flag makes the threads follow random

access patterns. Note that this is currently supported only for limited traffic types (-R, -

W2 and W5). In addition to –U, –n parameter can be used to specify the range for

random accesses (i.e. if we want them to be over a larger or smaller window).

8.7.20 Measuring loaded latency from a core other than 0

mlc --loaded_latency –c29 –o<perthreadfile>

By default, the latency thread runs on cpu#0. However, with –c option, you can specify

any cpu# where the latency thread will run. Using perthreadfile, you can select where the

memory for that thread will be allocated. In this example, latency thread is scheduled to

run on cpu#29 (-c option). Other parameters like the buffer size and memory location are

specified through perthreadfile below. Please note that the latency thread can only

support 100% read (R option)

29 R seq 100000 dram 1

0-10 R seq 100000 dram 0

In case –o option is not specified, then –i parameter can be used to specify where

memory for the latency thread has to be allocated as shown below

mlc --loaded_latency –c29 -k0-20 –i50

8.7.21 Measuring bandwidth with specific data in the buffers
allocated

mlc --loaded_latency –T -d0 -Mpattern-file

By default, MLC initializes buffers by writing increasing integer numbers to each line. If

there is a need to initialize the buffers/memory with specific patterns, this option can be

 30

used. A pattern input file can be provided that has an entire cache line in hex form. There

can be up to 8 such lines in the file. MLC will initialize the first 8 64-byte lines of the

buffer allocated with data that is provided in the pattern input file. 8 is the maximum

number of lines supported in the file. Then, the same will be repeated in sequence for all

the memory allocated by MLC.

Sample contents of pattern-file (with just one line of pattern)

FFFFFFFF111111110000000000000000FFFFFFFFFFFFFFFFAAAAAAAAAA000000000000000000000000000000

0000000000FFFFFFFFFFFFFFFF00000000000000

Since 64-byte line is represented in the above line, there are exactly 128 characters in that

line. The code checks for exactly 128 characters only. No 0x should be put in front. Also,

no error checking is done for invalid hex characters. If there are more patterns (up to a

max of 8), they can be added as separate lines to this file.

8.8 Measuring cache to cache transfer latencies

8.8.1 Default invocation

mlc --c2c_latency

The above command measures the latency to transfer a modified or clean line from L2

cache of one core to another core on the same socket. Also, it measures the time taken to

transfer a modified line from L3 of any socket to another socket.

8.8.2 Measuring HITM latency from remote L2 cache

mlc --c2c_latency –c2 –w22 –b200000 –C128

The above command is used to measure the time taken to transfer a modified line from

L2 cache to another core on a different socket. Writer thread ‘w’ pinned to cpu 22

modifies 128KB of data (as specified in –C parameter) and transfers control to reader

thread ‘c’ on cpu 2. Now, this thread reads the same 128KB of data that is currently

resident in L2 of thread 22. Since those lines are in M state, the snoop responses would

be Hit-modified (aka HITM) and the line would be transferred from the cache to the

requester. Then the control is transferred back to the writer thread and this thread would

move the window to another 128KB range in the buffer specified by –b parameter and

the process will be repeated.

8.8.3 Measuring HIT latency from remote L2 cache

mlc --c2c_latency –c2 –w22 –b200000 –C200 –H

The above command is used to measure the time taken to transfer a clean line from L2

cache to another core on a different socket. Writer thread ‘w’ pinned to cpu 22 reads

200KB of data (as specified in –C parameter) and transfers control to reader thread ‘c’ on

cpu 2. Now, this thread reads the same 200KB of data that is currently resident in L2 of

thread 22. Since those lines are in E state, the snoop responses would be Hit-clean (aka

 31

HIT) and the line would be transferred from the cache to the requester. Then the control

is transferred back to the writer thread and this thread would move the window to another

200KB range in the buffer specified by –b parameter and the process will be repeated.

8.8.4 Measuring HIT latency from remote L3 cache

mlc --c2c_latency –c2 –w22 –S24 –b200000 –C200 –H

In this case, we use a 3rd thread (selected by -S parameter) to force the cache line to be in

L3. In c2c_latency tests, -w thread runs first and then -S thread followed by -c thread. In

this particular example, both –w and –S parameters select cpus on the same socket.

Initially, thread on –w cpu reads the line into L2. Then, thread on –S cpu reads the same

block of data (size being selected by –C). This will get the line to be present in L3 also in

the shared state. Now, the control is transferred to thread on –c cpu. This thread will read

the same data which will result in hits to L3 on the other socket and the data will be

transferred from its cache.

 32

Appendix

Intel® Memory Latency Checker uses code from Intel® Power Governor.

Intel Power Governor is distributed under the following license:

The BSD License

Copyright (c) 2009-2013, Intel Corporation

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:

•Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.

•Redistributions in binary form must reproduce the above copyright notice, this list of

conditions and the following disclaimer in the documentation and/or other materials

provided with the distribution.

•Neither the name of Intel Corporation nor the names of its contributors may be used to

endorse or promote products derived from this software without specific prior written

permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 33

Intel® Memory Latency Checker uses code from Intel® Performance Counter Monitor.

Intel Performance Counter Monitor is distributed under the following license:

Copyright (c) 2009-2013, Intel Corporation

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:

•Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.

•Redistributions in binary form must reproduce the above copyright notice, this list of

conditions and the following disclaimer in the documentation and/or other materials

provided with the distribution.

•Neither the name of Intel Corporation nor the names of its contributors may be used to

endorse or promote products derived from this software without specific prior written

permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 34

Intel® Memory Latency Checker uses sample code from MSDN website

(http://msdn.microsoft.com/en-us/library/windows/desktop/aa366543(v=vs.85).aspx)

The following license governs redistribution of this code :

MICROSOFT LIMITED PUBLIC LICENSE

This license governs use of code marked as “sample” or “example” available on this web

site without a license agreement, as provided under the section above titled “NOTICE

SPECIFIC TO SOFTWARE AVAILABLE ON THIS WEB SITE.” If you use such code

(the “software”), you accept this license. If you do not accept the license, do not use the

software.

1. Definitions

The terms “reproduce,” “reproduction,” “derivative works,” and “distribution” have the

same meaning here as under U.S. copyright law.

A “contribution” is the original software, or any additions or changes to the software.

A “contributor” is any person that distributes its contribution under this license.

“Licensed patents” are a contributor’s patent claims that read directly on its contribution.

2. Grant of Rights

(A) Copyright Grant - Subject to the terms of this license, including the license

conditions and limitations in section 3, each contributor grants you a non-exclusive,

worldwide, royalty-free copyright license to reproduce its contribution, prepare derivative

works of its contribution, and distribute its contribution or any derivative works that you

create.

(B) Patent Grant - Subject to the terms of this license, including the license conditions

and limitations in section 3, each contributor grants you a non-exclusive, worldwide,

royalty-free license under its licensed patents to make, have made, use, sell, offer for sale,

import, and/or otherwise dispose of its contribution in the software or derivative works of

the contribution in the software.

3. Conditions and Limitations

(A) No Trademark License- This license does not grant you rights to use any

contributors’ name, logo, or trademarks.

(B) If you bring a patent claim against any contributor over patents that you claim are

infringed by the software, your patent license from such contributor to the software ends

automatically.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa366543(v=vs.85).aspx)

 35

(C) If you distribute any portion of the software, you must retain all copyright, patent,

trademark, and attribution notices that are present in the software.

(D) If you distribute any portion of the software in source code form, you may do so only

under this license by including a complete copy of this license with your distribution. If

you distribute any portion of the software in compiled or object code form, you may only

do so under a license that complies with this license.

(E) The software is licensed “as-is.” You bear the risk of using it. The contributors give

no express warranties, guarantees or conditions. You may have additional consumer

rights under your local laws which this license cannot change. To the extent permitted

under your local laws, the contributors exclude the implied warranties of merchantability,

fitness for a particular purpose and non-infringement.

(F) Platform Limitation - The licenses granted in sections 2(A) and 2(B) extend only to

the software or derivative works that you create that run on a Microsoft Windows

operating system product.

 36

Intel® Memory Latency Checker modified the sample IOCTL driver code from Windows

Driver Kit installation for the MSR driver. The redistribution of the driver (binary only)

is based on the following license

MICROSOFT SOFTWARE LICENSE TERMS

MICROSOFT WINDOWS DRIVER KIT

These license terms are an agreement between Microsoft Corporation (or based on where

you live, one of its affiliates) and you. Please read them. They apply to the software

named above, which includes the media on which you received it, if any. The terms also

apply to any Microsoft

• updates,

• supplements,

• Internet-based services, and

• support services

for this software, unless other terms accompany those items. If so, those terms apply.

By using the software, you accept these terms. If you do not accept them, do not use the

software.

If you comply with these license terms, you have the rights below.

1. INSTALLATION AND USE RIGHTS.

a. Installation and Use. One user may install and use any number of copies of the

software on your devices to design, develop and test your programs.

b. Included Microsoft Programs. The software contains other Microsoft programs.

In some cases, those programs and the license terms that apply to your use of them are

addressed specifically in these license terms. For all other included Microsoft programs,

these license terms govern your use.

c. Device Simulation Framework. One user may install and use any number of

copies of the Device Simulation Framework on your devices for the sole purpose of

testing the interoperability of your devices, drivers and firmware with Windows. For the

avoidance of doubt, the Device Simulation Framework shall not be used for testing

software you have designed and developed using a software development kit other than

the Windows Driver Kit.

d. Third Party Programs. The software contains third party programs. These license

terms as well as any license terms accompanying the third party program files apply to

your use of them.

2. ADDITIONAL LICENSING REQUIREMENTS AND/OR USE RIGHTS.

a. Distributable Code. The software contains code that you are permitted to

distribute in programs you develop if you comply with the terms below.

i. Right to Use and Distribute. The code and text files listed below are

“Distributable Code.”

• REDIST.TXT Files. You may copy and distribute the object code form of code

listed in REDIST.TXT files.

• Sample Code. You may modify, copy and distribute only in object code form the

sample code found in the SRC directory of the Windows Driver Kit, except that you may

also modify, copy, and distribute in source code form the sample code listed in the

SAMPLES.TXT file.

 37

• Third Party Distribution. You may permit distributors of your programs to copy

and distribute the Distributable Code as part of those programs.

ii. Distribution Requirements. For any Distributable Code you distribute, you must

• add significant primary functionality to it in your programs;

• require distributors and external end users to agree to terms that protect it at least

as much as this agreement;

• display your valid copyright notice on your programs; and

• indemnify, defend, and hold harmless Microsoft from any claims, including

attorneys’ fees, related to the distribution or use of your programs.

iii. Distribution Restrictions. You may not

• alter any copyright, trademark or patent notice in the Distributable Code;

• use Microsoft’s trademarks in your programs’ names or in a way that suggests

your programs come from or are endorsed by Microsoft;

• distribute Distributable Code to run on a platform other than the Windows

platform;

• include Distributable Code in malicious, deceptive or unlawful programs; or

• modify or distribute the source code of any Distributable Code so that any part of

it becomes subject to an Excluded License. An Excluded License is one that requires, as

a condition of use, modification or distribution, that

• the code be disclosed or distributed in source code form; or

• others have the right to modify it.

3. SCOPE OF LICENSE. The software is licensed, not sold. This agreement only

gives you some rights to use the software. Microsoft reserves all other rights. Unless

applicable law gives you more rights despite this limitation, you may use the software

only as expressly permitted in this agreement. In doing so, you must comply with any

technical limitations in the software that only allow you to use it in certain ways. You

may not

• work around any technical limitations in the software;

• reverse engineer, decompile or disassemble the software, except and only to the

extent that applicable law expressly permits, despite this limitation;

• make more copies of the software than specified in this agreement or allowed by

applicable law, despite this limitation;

• publish the software for others to copy;

• rent, lease or lend the software;

• transfer the software or this agreement to any third party; or

• use the software for commercial software hosting services.

4. BACKUP COPY. You may make one backup copy of the software. You may

use it only to reinstall the software.

5. DOCUMENTATION. Any person that has valid access to your computer or

internal network may copy and use the documentation for your internal, reference

purposes.

6. EXPORT RESTRICTIONS. The software is subject to United States export laws

and regulations. You must comply with all domestic and international export laws and

regulations that apply to the software. These laws include restrictions on destinations,

end users and end use. For additional information, see www.microsoft.com/exporting.

 38

7. SUPPORT SERVICES. Because this software is “as is,” we may not provide

support services for it.

8. ENTIRE AGREEMENT. This agreement, and the terms for supplements,

updates, Internet-based services and support services that you use, are the entire

agreement for the software and support services.

9. APPLICABLE LAW.

a. United States. If you acquired the software in the United States, Washington state

law governs the interpretation of this agreement and applies to claims for breach of it,

regardless of conflict of laws principles. The laws of the state where you live govern all

other claims, including claims under state consumer protection laws, unfair competition

laws, and in tort.

b. Outside the United States. If you acquired the software in any other country, the

laws of that country apply.

10. LEGAL EFFECT. This agreement describes certain legal rights. You may have

other rights under the laws of your country. You may also have rights with respect to the

party from whom you acquired the software. This agreement does not change your rights

under the laws of your country if the laws of your country do not permit it to do so.

11. DISCLAIMER OF WARRANTY. The software is licensed “as-is.” You bear

the risk of using it. Microsoft gives no express warranties, guarantees or conditions. You

may have additional consumer rights under your local laws which this agreement cannot

change. To the extent permitted under your local laws, Microsoft excludes the implied

warranties of merchantability, fitness for a particular purpose and non-infringement.

12. LIMITATION ON AND EXCLUSION OF REMEDIES AND DAMAGES.

You can recover from Microsoft and its suppliers only direct damages up to U.S. $5.00.

You cannot recover any other damages, including consequential, lost profits, special,

indirect or incidental damages.

This limitation applies to

• anything related to the software, services, content (including code) on third party

Internet sites, or third party programs; and

• claims for breach of contract, breach of warranty, guarantee or condition, strict

liability, negligence, or other tort to the extent permitted by applicable law.

It also applies even if Microsoft knew or should have known about the possibility of the

damages. The above limitation or exclusion may not apply to you because your country

may not allow the exclusion or limitation of incidental, consequential or other damages.

 39

Intel® Memory Latency Checker uses code from the Linux NVM Library

https://github.com/pmem/nvml/).

The Linux NVM Library is distributed under the following license:

Copyright (c) 2014-2015, Intel Corporation

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

 * Redistributions of source code must retain the above copyright

 notice, this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above copyright

 notice, this list of conditions and the following disclaimer in

 the documentation and/or other materials provided with the

 distribution.

 * Neither the name of Intel Corporation nor the names of its

 contributors may be used to endorse or promote products derived

 from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT

NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

 40

Everything in this source tree is covered by the previous license

with the following exceptions:

* src/jemalloc has its own (somewhat similar) license contained in

 src/jemalloc/COPYING.

* utils/cstyle (used only during development) licensed under CDDL.

