
Lesson 2: Extreme Value Analysis, Angle-based and Depth-based Techniques 
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Learning objectives

You will be able to:

▪ Describe probabilistic models for anomaly detection

▪ Apply extreme value analysis 

▪ Apply angle-based and depth-based techniques

▪ Use Python* to perform anomaly detection on one- and two-dimensional data
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Probabilistic models for anomaly detection

Introduction

▪ In Lesson 1, we introduced statistical tools for anomaly detection

▪ These were used heuristically (= rules of thumb)

▪ The statistical tools become more powerful if they can be connected to an 
underlying probabilistic model

You don’t always have such a model, but if you do and believe it is reliable, use it.
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Probabilistic models for anomaly detection

Workflow 

▪ Choose an appropriate model for your data

▪ Select a probability threshold below which you will label the data an anomaly

▪ Calculate the probability of observing each instance your data 

▪ Those instances which fall below the threshold are anomalies
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Probabilistic models for anomaly detection

Example

▪ You are looking for match fixing in the 2018 World Cup soccer matches

▪ As a first test, you look at the number of goals in each match

▪ Call this number n (where n=0,1,2,3…)

▪ If the probability of observing n goals is below 2%, the match is an anomaly

Important: this threshold must be set BEFORE you look at the data.
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Probabilistic models for anomaly detection

Example (continued)

▪ It has been shown that the number of goals in a World Cup match is well 
approximated by a Poisson distribution

▪ The probability of scoring n goals in a match is given by:

  
P(n) =

l ne-l

n!

where λ is the average number 
of goals per match
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Probabilistic models for anomaly detection
Example (continued)

▪ For World Cup events of the modern era, λ = 2.5

▪ Using the table of probabilities on the right, we 
see that matches with 7 or 8 goals would be 
labeled as anomalies [P(n) < 2%]

▪ In the 2018 World Cup, there were three 
matches with 7 goals and no matches with 8 
goals:

– Belgium 5-2 Tunisia

– England 6-1 Panama 

– France 4-3 Argentina

n P(n)
0 0.082
1 0.205
2 0.257
3 0.214
4 0.134
5 0.067
6 0.028
7 0.010
8 0.003
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Probabilistic models for anomaly detection

Note of caution

▪ Finding anomalies DOES NOT mean you detected match fixing

▪ It means you should look at the anomalous matches more closely

▪ It is still possible that the matches with 7 goals happened by chance

▪ Other sources of problems with probabilistic models for anomaly detection: 

– model is inappropriate

– parameters are wrong

– test statistic is poorly chosen
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Extreme value analysis

Motivation

▪ Sometimes an anomaly is an extreme event: a very big insurance loss, a 
very large flood, a very hot summer, etc.

▪ As such events can be catastrophic, it is natural to ask how likely are these 
extreme events

▪ Problem: extreme events are rare, so are hard to model with typical 
probability distribution because there is very little data
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Extreme value analysis

The challenge with modeling extreme events

▪ From the World Cup matches discussed previously, we can calculate the 
probability of scoring 12 goals in a match: it is about 1 in 100,000

▪ Sounds very, very unlikely, but it happened

▪ The probability estimate is suspect. Why? The data used to calculate the 
parameter λ only includes matches with 0 to 8 goals scored. It is unlikely to 
capture the behavior of extreme events

How do you predict events outside the range of observations?
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Extreme value analysis

Two practical approaches*

▪ Block maxima: take one maximum value per unit time (often annual)

▪ Peaks over threshold (exceedances): take all values over a specific threshold

▪ These approaches work because both the maxima and the exceedances are 
described by specific families of probability distributions

*Note: for simplicity, we will assume the extreme event is a maximum, but the 
approach also works when the extreme event is a minimum
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Univariate extreme value analysis

One dimensional case

▪ To show how these approaches work, we will start with one-dimensional data

▪ Consider a sequence of independent and identically-distributed random 
variables

▪ Example: Xi is the daily ozone level on day i (we will work with this example in 
the Python* notebook that accompanies this lecture)

  
X

1
, X

2
...X

n
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Generalized extreme value distribution

The extreme value theorem

▪ Let the maxima of the random variables be 

▪ When n is large, the distribution of the maxima Mn is a generalized extreme 
value (GEV) distribution, which is characterized by three parameters:

  
M

n
= max(X

1
, X

2
...X

n
)

 

x  = shape (type)

m  = location

s  = scale ( > 0)
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GEV distribution: probability density function
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Block maxima

What does the extreme value theorem mean?

▪ As long as the underlying distribution of your data is not too strange, then 
regardless of what this distribution is, maxima of samples of size n will follow 
a GEV distribution if n is large enough

▪ So if you have enough data, you can use it to determine the three parameters 
that describe your GEV (ξ, μ, σ) = (shape, location, scale)

▪ Once you have your complete GEV (with parameters), you can answer 
questions such as, “How likely is it to exceed a certain value in a given unit of 
time?”
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Block maxima

Workflow

▪ Divide your data into blocks of fixed size. Typically, the size is one year

▪ For each one year block, find the maximum value. For a yearly division, the 
collection of maxima is known as an “annual maximum series” (AMS)

▪ Fit the AMS data with a GEV distribution. Extract the shape, location, scale and 
parameters

Where judgment is needed: how to divide the data into blocks

(We will explore this point in the Python* notebook that accompanies this lecture)
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Peaks over threshold 

When you are interested in more than just a maximum value

▪ For example, consider ozone levels mentioned previously.  An air quality 
index (AQI) for ozone over 200 is considered ‘very unhealthy’

▪ This level can be exceeded several times per year and there can be several 
years when it isn’t exceeded

▪ In this case, the block maxima approach isn’t useful

▪ Instead, you want the the probability of exceeding some threshold. This can 
be obtained with the Peak Over Threshold (POT) approach
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Generalized Pareto Distribution

Pickands-Balkema-de Haans theorem

▪ Consider a sequence of independent and identically-distributed random variables

▪ Take only observations that are above a fixed threshold u

▪ When u is very large, the distribution of values above the threshold (exceedances) 
is a generalized Pareto distribution (GPD), which is characterized by three 
parameters:

 x  = shape , m = location, s  = scale ( > 0)
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GPD distribution: probability density function

  f (x) =  t(x) /s
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Peak over threshold

What does the Pickands-Balkema-de Haans theorem mean?

▪ Universality—almost all probability distributions have a tail that is a GPD

▪ So if you have enough data, you can use it to determine the three parameters 
that describe your GPD (ξ, μ, σ) = (shape, location, scale)

▪ Note that the theorem holds in the limit of an infinite threshold u

▪ In practice, you must choose a finite u and there is a tradeoff:

– large u, theorem applies better, but have few data points (poor statistics)

– small u, have more data points, but theorem is less applicable
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Peaks over threshold

Workflow

▪ Choose a threshold

▪ Use only the data that is above threshold

▪ Fit this data with a GPD distribution. Extract the shape, location, scale and 
parameters

Where judgment is needed: how to choose the threshold

(We will explore this point in the Python* notebook that accompanies this lecture)
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Multivariate extreme value analysis

Generalization of univariate case

▪ Can generalize both block maxima and peaks over threshold approaches to 
higher dimensions

▪ The univariate GEV distributions and GDP (in appropriate combinations) are 
still useful

▪ New twist: correlation between the variables

▪ Numerous models exist to capture correlations, all of which introduce 
additional fitting parameters
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Extreme value analysis (EVA): final thoughts

Two notes of caution

▪ For EVA to give reasonable results, it is important to check that mathematical 
assumptions behind the theorems are met—e.g., time series must be stationary

▪ EVA will detect anomalies if they are maxima or minima. But what if the anomalies  
aren’t either?

Anomaly is a maximum Anomaly is neither maximum

nor minimum 
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Anomaly detection without probability 
distributions
The geometry of the data

▪ Until now we focused on ways to detect anomalies using probability distributions

▪ This approach has many strengths, but isn’t always applicable. Perhaps you don’t 
know the underlying probabilistic model or the data doesn’t satisfy the assumptions 
of extreme value analysis

▪ In such cases, it is useful to consider techniques based on the geometry (spatial 
structure) of the data

▪ Here we will discuss two such techniques for multivariate data: angle-based and 
depth-based
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Angle-based techniques

For a normal point (orange), the angle 
it makes with any other two data 
points varies a lot as you choose 
different data points

For an anomaly (green), the angle 
it makes with any other two data 
points doesn’t vary much as you 
choose different data points

The essential idea
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Angle-based techniques
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Angle-based techniques

Implementation

▪ For each data point, determine the angle it makes with all pairs of other data 
points

▪ Calculate the variance of this angle

▪ Points for which the variance is below are predetermined threshold are anomalies

As described, this algorithm is very slow for large datasets

(We will discuss the runtime complexity of the algorithm in the Python* notebook 
that accompanies this lecture)
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Calculating the angle

a

b

Use vector distances between points

q    
cosq =

a ×b

ab

Dot product

Magnitude of a Magnitude of b
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Other angle-like metrics

Improving the performance of angle-based techniques

▪ The angle is a good metric in principle, it doesn’t always work well in 
practice

▪ Other angle-like metrics have been devised. For example:

– While ψ is often referred to as angle, it isn’t a true angle

– Note the square powers in the denominator, which introduce a 
distance-dependence in this metric

(We will examine these points in the Python* notebook that accompanies 
this lecture)

   
cosy =

a ×b

a2b2
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Depth-based techniques

Another approach that doesn’t use a probability distribution

▪ Anomalies are assumed to lie at the edge of the data space

▪ Organize the data in layers

▪ Each layer in labeled by its depth. The outermost layer is depth = 1, the next is 
depth = 2 and so on

▪ Anomalies are those points with a depth below a pre-determined threshold
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Convex hull

A common depth-based approach

▪ Convex hull: the smallest convex set that contains the data

▪ Points on the convex hull of the whole data space have depth = 1

▪ Points on the convex hull of the dataset after removing all of the depth = 1 
points have depth = 2

▪ And so on…

▪ Anomalies are points with a depth ≤ n (where n is a positive integer)

▪ Natural implementation as a recursive algorithm (see Python* notebook)
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Convex hull

depth = 1

depth = 2

depth = 3



38

Convex hull

Comments

▪ Convex hull is typically efficient only for two- and three-dimensional data

▪ While the algorithm is usually used to classify data (anomaly vs. normal), the 
depth can also be used as a scoring mechanism

▪ Not suitable for anomaly detection if the anomalies aren’t at edges of data
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Use Python* for anomaly detection

Next up is a look at applying these concepts in Python*

▪ See notebook entitled Extreme_Anomaly_Detection_student.ipynb
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Learning objectives recap

In this session you learned how to:

▪ Describe probabilistic models for anomaly detection

▪ Apply extreme value analysis 

▪ Apply angle-based and depth-based techniques

▪ Use Python* to perform anomaly detection on one- and two-dimensional 
data
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