
Module 1

Learning Objectives

2

▪ Understand differences between Machine Learning and Deep Learning

▪ Understand Deep Learning concepts

You will be able to:

AI / Machine Learning / Deep Learning

Artificial Intelligence (AI):
Broader concept of machines
being able to carry out 'smart'
tasks

Machine Learning:
Current application of AI that
machines learn from data using
mathematical, statistical models

Deep Learning: (Hot!)
Using Neural Networks to solve
some hard problems

Artificial Intelligence

Machine Learning

Deep

Learning

Advances in AI

Many of the latest advances in AI are due to Deep Learning

 Self-driving cars

 Image recognition

 Language translation

About Deep Learning

Deep Learning uses Neural Networking techniques

Neural Networks fell out of favor in the ‘90s as statistics-based methods yielded
better results

Now making a comeback due to:

 Big Data: we have so much data to train our algorithms

 Big Data ecosystems: Hadoop*, Spark*, Cloud

 Big Compute: cloud computing

 Advances in hardware: CPU, GPU and TPU

ML vs. DL

Machine Learning Deep Learning

Data size

(see next slide for

graph)

Performs reasonably well on small / medium data Need large amount of data for reasonable

performance

Scaling Doesn't scale with large amount of data Scales well with large amount of data

Compute power Doesn't need a lot of compute (works well on single

machines)

Needs a lot of compute power (usually runs on

clusters)

CPU/GPU Mostly CPU bound Can utilize GPU for certain computes (massive

matrix operations)

Feature engineering Features need to be specified manually by experts DL can learn high-level features from data

automatically

Execution time Training usually takes seconds, minutes, hours Training takes lot longer (days)

Interpretability Easy to interpret Hard to understand the final result

Scaling With Data

ML algorithms tend to not
scale well for massive
amount of datasets

See next slides for Jeff
Dean's (Google*) take on
this

Scaling With Data

Now that we have massive amount of data, DL algorithms are outperforming ML
algorithms

Now

A Deep Learning Example : Image Recognition

Here each layer is doing some
computation and sending the
results to the next layer

Subsequent layers can recognize
complex shapes like eyes, noses,
etc.

A Brief History: Modeling After Neurons in Brain

The human brain is a bunch of interconnected neurons

The neuron is like a “gate” – produces an output

12

History, 1943: McCulloch Pitts Neural Model

McCulloch and Pitts defined a simple
model of a neuron

It consisted of N inputs In and N
Weights

Go to a transfer (sum) function, apply a
threshold to an output

Limitations:

 Binary output

 No way to automatically train
weights WN

13

History, 1957: Frank Rosenblatt

Frank Rosenblatt invented the
Perceptron:

- Simplest type of feedforward
neural network

14

Perceptron (Single Layer Perceptron)

The perceptron is a linear model used for binary
classification with a simple input–output
relationship

Mark 1 Perceptron

A Very Simple Perceptron

Here this perceptron
is deciding if I should
go to a concert.

It considers various
inputs (weather, if a
friend will join, etc.)

And different weights

If the final score is >
50, then the answer is
YES

A Very Simple Perceptron

What is the outcome if

 Weather is good

 And a friend can
join?

What is the outcome if

 You can go by
public transit

 And a friend can
join

Perceptron (Generalized)

Perceptron will have multiple
inputs and an output

Terminolog
y

Explanation

Xi Input

Wi Weight for the input

x.w

n Number of inputs

b Bias term (does not depend
on input values, shifts
decision boundary from
origin)

Constructing Neural Networks

We add multiple layers

Each layer can have many neurons

'Deep' Neural Networks

If the network has more than
ONE hidden layer, it is called
DEEP network (or more than 3
layers total including input and
output)

More layers gives the network
the ability to adapt to complex
data

However, more layers take
more time to train

Examples of 'Deep' Neural Networks

Image Recognition

 ResNet (from 2015) with 152 layers
A CNN (Convolutional Neural Network) from Microsoft that won ILSRVC 2015
competition

 AlexNet (8 layers)
Won ImageNet Challenge (millions of images in 20,000 categories) in 2012

Machine Translation

 Google Translate* uses Deep Neural Networks (DNN) to translate between
languages (English to French, etc.) with very high accuracy

Examples of Deep Neural Networks

Reinforcement Learning

Bots learning to play games automatically (at superhuman levels!)

Demo1 : Deep Mind playing Atari* Breakout

Demo2 : Deep Mind AlphaGo*

Demo3 : Open AI bots playing Dota 2* and beating pro human teams!

https://www.youtube.com/watch?v=TmPfTpjtdgg
https://www.youtube.com/watch?v=eHipy_j29Xw

Sizing Layers

Each Layer can have many neurons

How do we decide the number of neurons per layer?

Let's start with an example:

 Assume our input has 3 dimensions / Features (A,B,C)

 And we are classifying them into 2 classes X & Y

Sizing Layers

Input and Output are straight
forward

Input layer is sized to match
number of features

 in this case 3, for inputs A,B,C

Output layer is sized to match
number of output classes

 2 for outputs X,Y

Sizing Hidden Layers

How about Hidden Layer sizing? How
many neurons in Hidden Layer?

This is a 'hyper parameter' for the
network

We can try a few choices and evaluate
the results

Note: Large number of neurons can
'overfit' the data

Activation Function

 In this example, the
activation function is a
pretty simple 'comparison
function’

- If the (dot product) sum
of weight and input < 50 ,
output is NO

- If the sum is >= 50,
output is YES

- So we are converting a
simple number input
(score) into a binary
YES/NO answer

Activation Function

 Activation functions
propagate the output
of one layer’s nodes
forward to the next
layer

 Allows us to create
different output values

 Allows us to model
non-linear functions

Activation Function

Input sum = Σ (Wi . Xi) + bias term

Output = activation_function (input sum)

= g (input_sum)

One liner

Output = g (Σ (Wi . Xi) + b)

Types of Activation Functions

The following Activation Functions are in use:

 Linear

 SIGMOID*

 Tanh

 Rectified Linear Unit (ReLU) (and its variants)

Activation Function: Linear

Very simple

Used for Linear Regression

Output = weight* Input +
Intercept

Y = aX + b

Activation Function : SIGMOID*

Comes from Logistic Regression

It reduces the input values to an
output of 0 to 1 (probability)

SIGMOID* was the oldest / first
Activation Function used

However, now it has been eclipsed by
other Activation Functions that
produce better results

Activation Function : Tanh

Tanh function ranges from -1 to +1

(SIGMOID* function is between 0 and
+1)

So Tanh function can better deal with
negative numbers compared to
Sigmoid

Activation Function : Rectified Linear

ReLU is a very simple and effective
Activation Function

If input is above zero, it passes it on

If input goes below zero, it is clipped
at zero

ReLU is the current state of the art, as
it has been proven to work in many
different datasets

ReLu is also very fast to compute!

SIGMOID* / Tanh

SIGMOID* and Tanh both suffer from the Vanishing Gradient Problem:

 The derivative of a Sigmoid is less than .25

 As we propagate that through many layers, that gradient becomes smaller
and smaller and eventually 'vanishes' (too small)

ReLU to Rescue!

ReLU doesn't suffer from

 Vanishing Gradient Problem

 Exploding Gradient Problem

Here, simpler is actually better

Activation Function : Leaky ReLU

 Leaky ReLU fixes an inherent
problem with ReLU

- When input dips below zero, ReLU
produces ZERO

- This is 'dying ReLU' problem

 When input is below zero, Leaky
ReLU will produce a 'small signal'

Activation Function: SoftPlus

SoftPlus is 'smooth version of
ReLU'

Activation Function: SoftMax*

 SoftMax* is a generalized Logistic Regression

- Logistic Regression can do binary outcome (0 / 1)

- SoftMax* gives out probabilities for multiple classes

digit
(outcome)

0 1 2 3 4 5 6 7 8 9

Probability 0.9 0 0 0 0 0 0 0 0 0.1

Activation Functions - Comparison

Loss Functions

Loss functions quantify how close a
given Neural Network is to the truth

How much the predictions deviate from
expected outputs

 Convert this difference from Vectors
to a 'single number'

Goal is to minimize Loss Function

 Zero would mean the model is
'perfect'

 It is hard to achieve in practice, but
we can get pretty close to zero

42

Loss Functions For Regression: Mean Squared Error
(MSE) Loss Function

Very much like 'Ordinary Least Squares' in Linear Regression

Pros

 Very simple to understand

 Fast to compute

Cons

 Can be prone to outliers

43

Loss Functions For Regression: Mean Absolute Error Loss
(MAE)

Averages 'absolute error' across all data points

44

Loss Functions for Regressions Takeaway

Both 'Mean Squared Error' (MSE) and 'Mean Absolute Error' (MAE) are used
widely

And they perform pretty well on most scenarios

If the inputs span a large range (X1 = 1 to 10, X2 = 1000 to 1000000), then
consider normalizing them first

Other options to consider:

 Mean squared log error loss (MSLE)

 Mean absolute percentage error loss (MAPE)

45

Loss Function for Classification

 Classifiers segment data into 'buckets' (fraud / not-fraud, spam/not-spam)

 Most of the time, the classifier gives a probability (80% spam, 20% not spam)

 Loss Functions:

- Hinge Loss

- Logistics Loss

46

Loss Functions for Classification: Hinge Loss

 Hinge Loss is used heavily when the network does hard binary classification
(0 or 1)

 Can be extended for doing 'multiclass classification’

47

Loss Function for Classification : Logistic Loss

 Logistics Loss is preferred when we get probabilities instead of hard
classifications

 For example, model says 70% spam, 30% not spam, instead of giving a 0 or
1

 Last Layer uses 'SoftMax*' activation function

48

digit
(outcome)

0 1 2 3 4 5 6 7 8 9

Probability 0.75 0 0 0 0 0 0 0 0.15 0.10

Hyperparameters

• Models and networks have parameters that we adjust during optimization

- Goal is to minimize error and maximize performance

• Hyperparameters

- Learning rate

- Regularization

Hyperparameter : Learning Rate (alpha, 𝛂)

 Learning rate controls the amount by which we
adjust parameters during optimization

 It is a coefficient that scales the size of steps

 During back propagation we multiply error
gradient by learning rate

Hyperparameter : Learning Rate (alpha, 𝛂)

 Larger learning rate (close to 1.0) means:

- Bigger steps and less number of iterations

- But can overshoot and miss the minimum

 Smaller learning rate (0.0001) means:

- Smaller leaps, and lots of iterations

- Can find the minimum, but can take a long time

 What is the 'perfect’ learning rate?

- Experiment (it varies for each dataset and
computation)

Hyperparameters : Regularization (lambda, ƛ)

 Regularization helps avoid 'over fitting'

 It does this by controlling coefficients so they don't get too large

 L2 (Ridge) Regularization

- Shrinks coefficients to avoid over fitting

 L1 (Lasso) Regularization

- Shrinks coefficients like L2, but can also make them zero

- Effectively removing the variable from consideration (Variable Selection)

Summary

We learned about:

 Deep Learning vs. Machine Learning

 How Neural Nets have evolved

 Activation functions

 Loss functions

 Hyperparameter tuning

Recommended Resources

 Intel® AI Academy : https://software.intel.com/ai-academy

 https://software.intel.com/en-us/ai-academy/basics

 "Getting Started with Deep Learning"
by Josh Patterson, Adam Gibson
Link1

56

https://software.intel.com/ai-academy
https://software.intel.com/en-us/ai-academy/basics
https://www.safaribooksonline.com/library/view/getting-started-with/9781492037330/

