
Module 6

Learning Objectives

2

▪ Understand high-level APIs in BigDL

▪ Learn to use these APIs

You will be able to:

*Other names and brands may be claimed as the property of others.

Apache Spark* API Evolution

In Spark* v1.0 primary data abstraction
was provided by RDD (Resilient
Distributed Dataset) API

RDDs are

- Stable : they have been in use since
early days of Spark*

- Supported by many applications

4

*Other names and brands may be claimed as the property of others.

DataFrames in Apache Spark* v2

In Spark* v2, new API called
Dataframe and DataSet are
introduced

DataFrame Features

- Provide high-level APIs

- Easy to use

- Provides better performance
via various optimizations (better
memory management,
optimizing code on the fly ..etc.)

Other Spark* components (SQL,
ML, Streaming) are now migrating
to the new API

5

*Other names and brands may be claimed as the property of others.

DataFrame Architecture

Dataframes are part of
'Spark SQL*' package

Catalyst Optimizer will
generate optimized code
for runtime

So typically, programming
using DataFrame API yields
in better, faster code than
programming in RDD API

6

*Other names and brands may be claimed as the property of others.

DataFrame Performance

7

Comparing Apache Spark* Data Structures

8

RDD DataFrame Dataset

• Since v1

• Original data API

• Gives complete control to

developer

• Can be a bit low level

• Since Spark* v2 (experimental from

1.3)

• Created to give high-level data

access

• Data has schema, organized as

columns

• Supports SQL

• DataFrame = RDD + Schema

• Catalyst query optimizer

• Since Spark* v2

• Effort to unify RDD

and DataFrame

Java*, Python*, Scala* Java*, Python*, Scala* Java*, Scala*,

Python* (partial

support)

*Other names and brands may be claimed as the property of others.

Analytics Zoo

Analytics Zoo provides a unified analytics + AI platform

It brings together Apache Spark*, TensorFlow*, Keras* and BigDL

Supports 'pipeline' style programming (popular in Scikit* and Spark)

Data wrangling and analysis using PySpark*

Deep learning model development using TensorFlow* or Keras*

Provides built-in deep learning models (more on this later)

10

*Other names and brands may be claimed as the property of others.

https://github.com/intel-analytics/analytics-zoo

Analytics Zoo

Standard Spark* jobs

No changes to the Apache Spark* or Apache Hadoop* clusters needed

Iterative

Each iteration of the training runs as a Spark* job

Data parallel

Each Spark* task runs the same model on a subset of the data (batch)

(see next slide for diagram)

11

*Other names and brands may be claimed as the property of others.

Analytics Zoo & Apache Spark*

12

Apache Spark*

-submit

Analytics-zoo.jar
zoo-

python*

.zip

your

python*

file
MKL*

native lib

*Other names and brands may be claimed as the property of others.

Getting Started with Analytics Zoo – Python*

There are 2 ways of getting Analytics Zoo going with Python*

Option 1 : Using PIP

Option 2 : Manual install

(see next slides for more details)

13

*Other names and brands may be claimed as the property of others.

Analytics Zoo Install for Python* – Option 1 : Using
PIP

This is tested with PIP v9.0.1

Pip install only supports local mode

This method also installs PySpark*

For up to date instructions see here

14

6.1 - Analytics Zoo install with PIP
pip install --upgrade pip
change the zoo version accordingly
pip install analytics-zoo==0.2.0 # for Python 2.7
pip3 install analytics-zoo==0.2.0 # for Python 3.5 and Python 3.6

*Other names and brands may be claimed as the property of others.

https://analytics-zoo.github.io/master/#PythonUserGuide/install/

Analytics Zoo Install for Python* – Option 2 :
Manual Install (1 of 2)

15

6.2 - Analytics Zoo install manually

Step 1 : Install JDK 8, preferably Oracle JDK
export JAVA_HOME=/path/to/jdk

Step 2 : Download and install Spark
location : https://spark.apache.org/downloads.html
export SPARK_HOME=/path/to/spark

Step 3 : Download Latest Analytics Zoo
location : https://analytics-zoo.github.io/master/#release-download/

Step 4 : Extract Analytics Zoo
export ANALYTICS_ZOO_HOME=/path/to/analytics_zoo

*Other names and brands may be claimed as the property of others.

Analytics Zoo Install for Python* – Option 2 :
Manual Install (2 of 2)

16

Step 5 : Run one of the following
5.1 for Jupyter
$ANALYTICS_ZOO_HOME/bin/jupyter-with-zoo.sh

5.2 pyspark shell
$ANALYTICS_ZOO_HOME/bin/pyspark-with-zoo.sh

5.3 spark shell (Scala)
$ANALYTICS_ZOO_HOME/bin/spark-shell-with-zoo.sh

*Other names and brands may be claimed as the property of others.

Using Analytics Zoo in Python*

Make sure the following env variables are set

- SPARK_HOME

- ANALYTICS_ZOO_HOME

always first call init_nncontext() at the very beginning of the code. This will
create a SparkContext with optimized performance configuration and initialize
the BigDL engine

17

6.3 - Zoo in Python
from zoo.common.nncontext import init_nncontext
sc = init_nncontext("sample app")

*Other names and brands may be claimed as the property of others.

Analytics Zoo Features (List)

Distributed Tensorflow* and Keras* on Apache Spark*/BigDL

High-level abstractions and APIs

Built-in deep learning models

19

*Other names and brands may be claimed as the property of others.

Zoo Features: high-level API

Analytics provides DataFrame-based high-level API

Also supports native integration with Apache Spark* ML Pipeline

These are in NNFrames package

NNFrames provides both Python* and Scala* APIs

Compatible with Spark* v1.6 and v2.x

20

*Other names and brands may be claimed as the property of others.

NNFrames Highlights

Easy-to-use DataFrame (DataSet)-based API for training, prediction and
evaluation

Integration with Apache Spark* ML pipeline and compatibility

Can use feature transformers and algorithms in Spark* ML.

Run inference or transfer learning from pre-trained models of Caffe*, Keras*,
Tensorflow* or BigDL.

Training of BigDL built-in neural models (e.g., Inception, ResNet, Wide And
Deep).

Rich toolset for feature extraction and processing, including image, audio and
texts.

21

*Other names and brands may be claimed as the property of others.

NNFrames Useful Classes

22

Class Description

NNEstimator Extends org.apache.spark.ml.Estimator

NNModel Extends Apache Spark's* ML Transformer

NNClassifier Used for classification tasks

NNClassifierModel Specialized NNModel for classification task

NNImageReader Reads in Image data

*Other names and brands may be claimed as the property of others.

NNFrames: NNImageReader

23

6.9 - NNImageReader
from zoo.common.nncontext import init_nncontext
from zoo.pipeline.nnframes import NNImageReader

sc = init_nncontext()

read images from a path
imageDF = NNImageReader.readImages('/path/to/images', sc)

getName = udf(lambda row: ...)

df = imageDF.withColumn("name", getName(col("image")))

Load images into DataFrames using NNImageReader
Process loaded data using DataFrame transformations

zoo.feature.image Package : Feature Engineering of
Images

24

Class Description

NNImageReader Reads images into Apache Spark* DataFrame

Image Transformers Zoo provides many pre-defined image processing
transformers built on top of OpenCV™

ImageBrightness – adjusts Image brightness

ImageResize – resize image

ImageMatToTensor - Transform opencv mat to tensor

for full list see here

*Other names and brands may be claimed as the property of others.

https://analytics-zoo.github.io/master/#ProgrammingGuide/workingwithimages/

zoo.feature.image Package: Feature Engineering of
Images

25

6.10 – Zoo Image Processing
from zoo.pipeline.nnframes import NNImageReader, ChainedPreprocessing
from zoo.feature.image import RowToImageFeature, ImageChannelNormalize,
ImageMatToTensor, ImageFeatureToTensor

transformer = ChainedPreprocessing(
[RowToImageFeature(),
ImageChannelNormalize(123.0, 117.0, 104.0),
ImageMatToTensor(),
ImageFeatureToTensor()])

Process Images using built-in feature engineering operations

Zoo : Keras* Style APIs

26

6.11 - Zoo : Keras Style APIs
from zoo.pipeline.api.keras.layers import Convolution2D, MaxPooling2D, Dense
from zoo.pipeline.api.keras.models import Sequential

model = Sequential()
.add(Convolution2D(32, 3, 3, activation='relu',

input_shape=(1, 28, 28))) \
.add(MaxPooling2D(pool_size=(2, 2))) \
.add(Flatten())
.add(Dense(10, activation='softmax')))

*Other names and brands may be claimed as the property of others.

NNFrames: Native DL Support in Apache Spark*
Dataframes

27

6.12 - NNFrames : Support for Spark DataFrames
from zoo.pipeline.nnframes import NNEstimator
from bigdl.nn.criterion import CrossEntropyCriterion

estimator = NNEstimator(model, CrossEntropyCriterion(), transformer) \
.setLearningRate(0.003) \
.setBatchSize(40) \
.setMaxEpoch(1) \
.setFeaturesCol("image")
.setCachingSample(False)

use fit on DataFrames
nnModel = estimator.fit(df)

Train Model Using Spark ML Pipelines
Process loaded data using DataFrame transformations

*Other names and brands may be claimed as the property of others.

Built-in Models

29

Model Description

Object Detection Identification of Objects within Images

Image Classifier Classification of Images as one of n classes

Text Classification Identifying Text as one of n classes

Recommendation Predict User-item relationship

Object Detection API

Analytics Zoo provides a collection of pre-trained models for Object Detection

These models can be used for out-of-the-box inference

Two typical kind of pre-trained Object Detection models: SSD and Faster
RCNN-supported models

- PASCAL VOC model

- COCO model

30

http://host.robots.ox.ac.uk/pascal/VOC/

Object Detector Sample Usage – Python*

31

6.4 - Object Detection API
from zoo.common.nncontext import init_nncontext
from zoo.models.image.objectdetection import ImageSet, ObjectDetector

sc = init_nncontext("image detector app")

model = ObjectDetector.load_model(model_path)
image_set = ImageSet.read(img_path, sc)
output = model.predict_image_set(image_set)

*Other names and brands may be claimed as the property of others.

Image Classification API

Analytics Zoo provides a collection of pre-trained models for Image
Classification

Provided models:

- Alexnet

- Inception-V1

- VGG

- Resnet

- Densenet, Mobilenet, Squeezenet

You can download the models here

32

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networksese
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1512.03385
https://analytics-zoo.github.io/master/

Image Classification Usage

33

6.5 - Object Detection API
from zoo.common.nncontext import init_nncontext
from zoo.models.image.objectdetection import ImageSet, ImageClassifier

sc = init_nncontext("image detector app")

imc = ImageClassifier.load_model(model_path)
image_set = ImageSet.read(img_path, sc)
output = imc.predict_image_set(image_set)

Text Classification API

Analytics Zoo provides pre-defined models having different encoders that can
be used for classifying texts.

Features:

- Easy-to-use models, could be fed into NNFrames or BigDL Optimizer for
training

- The encoders we support include CNN, LSTM and GRU

Example 1

34

https://github.com/intel-analytics/analytics-zoo/tree/master/pyzoo/zoo/examples/textclassification

Text Classifier Sample Code

35

6.6 - Text Classification API
Step 1 : define the model
from zoo.models.image.objectdetection import TextClassifier

text_classifier = TextClassifier(
class_num, # The number of text categories to be classified.
Positive int.
token_length, # The size of each word vector. Positive int.
sequence_length=500, # The length of a sequence. Positive int.
Default is 500.
encoder="cnn", # The encoder for input sequences. String. 'cnn' or
'lstm' or 'gru' are supported. Default is 'cnn'.
encoder_output_dim=256 # The output dimension for the encoder.
Positive int. Default is 256.
)

Text Classifier Sample Code

36

Step 2 : train the model
optimizer = Optimizer(

model=text_classifier,
training_rdd=train_rdd,
criterion=ClassNLLCriterion(logProbAsInput=False),
end_trigger=MaxEpoch(20),
batch_size=128,
optim_method=Adagrad(learningrate=0.01, learningrate_decay=0.001))

optimizer.set_validation(
batch_size=128,
val_rdd=val_rdd,
trigger=EveryEpoch(),
val_method=[Top1Accuracy()])

Text Classifier Sample Code

37

Step 3 : Predict
Predict for probability distributions.
results = text_classifier.predict(rdd)

Predict for class labels. By default, label starts from 0.
result_classes = text_classifier.predict_classes(rdd)

Recommendation API
Analytics Zoo provides two Recommender models, including Wide and Deep
(WND) learning model and Neural network-based Collaborative Filtering (NCF)
model.

Features:

- Easy-to-use models, could be fed into NNFrames or BigDL Optimizer for
training

- Recommenders can handle either explicit or implicit feedback, given
corresponding features

- It provides three user-friendly APIs to predict user item pairs, and
recommend items (users) for users (items)

Example1

38

https://analytics-zoo.github.io/master/#ProgrammingGuide/recommendation/

Recommendation API Usage

39

6.7 - Recommender API
define model
wide_n_deep = WideAndDeep(

class_num,
column_info,
model_type="wide_n_deep",
hidden_layers=(40, 20, 10))

train
optimizer = Optimizer(

model=wide_n_deep,
training_rdd=train_data,
criterion=ClassNLLCriterion(),
optim_method=Adam(learningrate = 0.001, learningrate_decay=0.00005),
end_trigger=MaxEpoch(10),
batch_size=batch_size)

optimizer.optimize()

Recommendation API Usage

40

predict
userItemPairPrediction = wide_n_deep.predict_user_item_pair(valPairFeatureRdds)

userRecs = wide_n_deep.recommend_for_user(valPairFeatureRdds, 3)
itemRecs = wide_n_deep.recommend_for_item(valPairFeatureRdds, 3)

Summary

Learned about:

- high level Dataframe APIs in Apache Spark*

- Analytics Zoo API

- Handy classes in Analytics Zoo

41

*Other names and brands may be claimed as the property of others.

Lab 6.1 : Zoo APIs

Overview:
We will get familiar with Analytics Zoo APIs

Run Time
20-30 mins

Instructions
Please follow lab guide

42

Recommended Resources

- Intel Analytics Zoo : https://github.com/intel-analytics/analytics-zoo

- Intel AI Academy : https://software.intel.com/ai-academy

- https://software.intel.com/en-us/ai-academy/basics

43

https://github.com/intel-analytics/analytics-zoo
https://software.intel.com/ai-academy
https://software.intel.com/en-us/ai-academy/basics

