
Time Series 501
Lesson 8: Time Series through Deep Learning



Learning Objectives

You will be able to do the following:

• Explain why deep learning is useful for time-series forecasting.

• Identify pros and cons of the deep-learning approach.

• Describe how time series can be modeled using recurrent neural networks 

(RNNs).

• Describe how long short-term memory units (LSTM) can improve on 

simple RNNs.

• Use Python* and Keras to create deep-learning models for time series.
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Why Deep Learning?

Neural networks offer several benefits over 
traditional time series forecasting models:

▪ Automatically learn how to incorporate series 
characteristics like trend, seasonality, and 
autocorrelation into predictions.

▪ Able to capture very complex patterns.

▪ Can simultaneously model many related series 
instead of treating each separately.
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Why Not Deep Learning?

Neural network benefits don’t come for 
free:

▪ Models can be complicated to build.

▪ Models are computationally expensive to build 
(GPUs help accelerate training).

▪ It is very challenging to explain / interpret the 
predictions made by the model (“black box”).

▪ Tends to perform best with large training 
datasets.
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What Is an RNN?

Recurrent neural networks map a sequence of inputs to predicted output(s).

▪ Most common format is many-to-one, which maps an input sequence to one output value

▪ Input at each time step is used to sequentially update the RNN cell’s hidden state or memory.

▪ After processing of the input sequence, hidden state information is used to predict the output. 
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Applying RNN to Time-Series Forecasting
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Applying RNN to Time-Series Forecasting
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Applying RNN to Time-Series Forecasting
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Sequential Information Flow Sequence: Step 0
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Sequential Information Flow Sequence: Step 1
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Sequential Information Flow Sequence: Step 2
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Sequential Information Flow Sequence: Step 3
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Sequential Information Flow Sequence: Step 4
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What’s Going on under the Hood? (cont.)
RNNs are often represented as a cycle, simplifying the diagram

▪ The same U and V are applied repeatedly to sequentially update the hidden state, using 
the previous hidden state and the new input at each time step
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The Limitations of Simple RNNs

Basic RNNs often struggle when processing 
long input sequences

▪ Mathematically difficult for RNNs to capture 
long-term dependencies over many time steps

▪ Problem for time series, where sequences are 
often hundreds of steps or more

▪ Long short-term memory networks (LSTMs) 
can mitigate these issues with a better memory 
system
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Recap: Time Series Many-to-One RNN
Use past time steps to forecast future time steps

▪ Input: time series’ historical steps

▪ Output: time series’ next step  

▪ Can forecast multiple time steps by adding previous predicted step to input sequence  
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What’s Going on under the Hood?
RNN unit math:

▪ U, V, and W are trainable weight matrices, the hi are hidden states

▪ 𝜎 is the sigmoid activation function, and the weight matrices are applied as linear 
transformations

t0 t1 t2 t3 t4

h0 h1 h2 h3 h4

t5

V V V V

U U U U U

W

hi = 𝜎(Uti-1 + Vhi-1) tout = Whout-1

𝜎(x) = 
𝑒𝑥

𝑒𝑥+1



18

What’s Going on under the Hood? (cont. 2) 
How do we obtain the weight matrices U, V, and W?

▪ When we train an RNN, we are actually finding weights via the 
backpropagation algorithm.

▪ In backpropagation, we repeatedly process the training data, 
updating the weights in order to minimize a cost function.

▪ For time series forecasting, a typical cost function would be 
mean squared error or a similar metric.

▪ Intuitively, we find values for U, V, and W that cause our 
predicted outputs tout to be as close to the true target values 
as possible. 
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What Is a LSTM? (cont.)
Long short-term memory networks regulate information flow and memory 
storage.

▪ LSTM cells share forget, input, and output gates that control how memory states are 
updated and information is passed forward.

▪ At each time step, the input and current states determine the gate computations.   
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Choosing LSTM vs. RNN?
Always consider the problem at hand.

▪ If sequences are many time steps long, an RNN may perform poorly.

▪ If training time is an issue, using a LSTM may be too cumbersome. 

▪ Graphics processing units (GPUs) speed up all neural network training but are especially 
recommended when training LSTMs on large datasets.



21

Use Python and Keras to Construct RNNs and LSTMs 
for Time-Series Forecasting
Next up is a look at building these neural networks in Python.

▪ See notebook entitled Introduction_to_Deep_Learning_student.ipynb



Legal Notices and Disclaimers

This presentation is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS 
SUMMARY.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software 
or service activation. Performance varies depending on system configuration. Check with your system manufacturer or 
retailer or learn more at intel.com.

Sample source code is released under the Intel Sample Source Code License Agreement.

Intel, the Intel logo, the Intel. Experience What’s Inside logo, and Intel. Experience What’s Inside are trademarks of Intel 
Corporation in the U.S. and/or other countries. 

*Other names and brands may be claimed as the property of others. 

Copyright © 2018, Intel Corporation. All rights reserved.
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http://www.intel.com/
http://software.intel.com/en-us/articles/intel-sample-source-code-license-agreement/
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What Is a LSTM?
Long short-term memory networks share RNNs’ conceptual structure.

▪ LSTM cells have the same role as RNN cells in sequential processing of the input 
sequence.

▪ LSTM cells are internally more complex, with gating mechanisms and two states –
a “hidden state” and a ”cell state.”
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LSTM vs. RNN?

Are LSTMs always better than simple RNNs?

▪ LSTMs are better suited for handling long-term 
dependencies than RNNs

▪ However, they are much more complex, 
requiring many more trainable weights

▪ The result is that they take longer to train 
(slower backpropagation) and can be more 
prone to overfitting



Applications in Python
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Learning Objectives Recap

In this session you learned how to do the following:

• Explain why deep learning is used for time-series forecasting and some pros/cons.

• Describe how time series can be modeled using RNNs and LSTMs.

• Use Python to create these models.




