
Time Series 501
Lesson 8: Time Series through Deep Learning

Learning Objectives

You will be able to do the following:

• Explain why deep learning is useful for time-series forecasting.

• Identify pros and cons of the deep-learning approach.

• Describe how time series can be modeled using recurrent neural networks

(RNNs).

• Describe how long short-term memory units (LSTM) can improve on

simple RNNs.

• Use Python* and Keras to create deep-learning models for time series.

2

3

Why Deep Learning?

Neural networks offer several benefits over
traditional time series forecasting models:

▪ Automatically learn how to incorporate series
characteristics like trend, seasonality, and
autocorrelation into predictions.

▪ Able to capture very complex patterns.

▪ Can simultaneously model many related series
instead of treating each separately.

4

Why Not Deep Learning?

Neural network benefits don’t come for
free:

▪ Models can be complicated to build.

▪ Models are computationally expensive to build
(GPUs help accelerate training).

▪ It is very challenging to explain / interpret the
predictions made by the model (“black box”).

▪ Tends to perform best with large training
datasets.

5

What Is an RNN?

Recurrent neural networks map a sequence of inputs to predicted output(s).

▪ Most common format is many-to-one, which maps an input sequence to one output value

▪ Input at each time step is used to sequentially update the RNN cell’s hidden state or memory.

▪ After processing of the input sequence, hidden state information is used to predict the output.

t0 t1 t2 t3 t4

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t5

6

Applying RNN to Time-Series Forecasting

t0 t1 t2 t3 t4

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t5

Time Series -

History

7

Applying RNN to Time-Series Forecasting

t0 t1 t2 t3 t4

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t5

Time Series -

History

Trained RNN

Components

8

Applying RNN to Time-Series Forecasting

t0 t1 t2 t3 t4

RNN
cell

RNN
cell

RNN
cell

RNN
cell

RNN
cell

t5

Time Series –

History

Trained RNN

Components

Time Series –

Next Step

9

Sequential Information Flow Sequence: Step 0

t0

h0

Time Series –

History

Hidden States

10

Sequential Information Flow Sequence: Step 1

t0 t1

h0 h1

Time Series –

History

Hidden States

11

Sequential Information Flow Sequence: Step 2

t0 t1 t2

h0 h1 h2

Time Series –

History

Hidden States

12

Sequential Information Flow Sequence: Step 3

t0 t1 t2 t3

h0 h1 h2 h3

Time Series –

History

Hidden States

13

Sequential Information Flow Sequence: Step 4

t0 t1 t2 t3 t4

h0 h1 h2 h3 h4

t5

Time Series –

History

Hidden States

Time Series –

Next Step

14

What’s Going on under the Hood? (cont.)
RNNs are often represented as a cycle, simplifying the diagram

▪ The same U and V are applied repeatedly to sequentially update the hidden state, using
the previous hidden state and the new input at each time step

V

tin

h

tout

U

W

hi = 𝜎(Uti-1 + Vhi-1)

tout = Whout-1

𝜎(x) =
𝑒𝑥

𝑒𝑥+1

15

The Limitations of Simple RNNs

Basic RNNs often struggle when processing
long input sequences

▪ Mathematically difficult for RNNs to capture
long-term dependencies over many time steps

▪ Problem for time series, where sequences are
often hundreds of steps or more

▪ Long short-term memory networks (LSTMs)
can mitigate these issues with a better memory
system

Time series image – large number of timesteps

to process

16

Recap: Time Series Many-to-One RNN
Use past time steps to forecast future time steps

▪ Input: time series’ historical steps

▪ Output: time series’ next step

▪ Can forecast multiple time steps by adding previous predicted step to input sequence

t0 t1 t2 t3 t4

RNN

t5

RNN RNN RNN RNN

t0 t1 t2 t3

RNN

t6

RNN RNN RNN RNN

t5t4

RNN

17

What’s Going on under the Hood?
RNN unit math:

▪ U, V, and W are trainable weight matrices, the hi are hidden states

▪ 𝜎 is the sigmoid activation function, and the weight matrices are applied as linear
transformations

t0 t1 t2 t3 t4

h0 h1 h2 h3 h4

t5

V V V V

U U U U U

W

hi = 𝜎(Uti-1 + Vhi-1) tout = Whout-1

𝜎(x) =
𝑒𝑥

𝑒𝑥+1

18

What’s Going on under the Hood? (cont. 2)
How do we obtain the weight matrices U, V, and W?

▪ When we train an RNN, we are actually finding weights via the
backpropagation algorithm.

▪ In backpropagation, we repeatedly process the training data,
updating the weights in order to minimize a cost function.

▪ For time series forecasting, a typical cost function would be
mean squared error or a similar metric.

▪ Intuitively, we find values for U, V, and W that cause our
predicted outputs tout to be as close to the true target values
as possible.

V

tin

h

tout

U

W

19

What Is a LSTM? (cont.)
Long short-term memory networks regulate information flow and memory
storage.

▪ LSTM cells share forget, input, and output gates that control how memory states are
updated and information is passed forward.

▪ At each time step, the input and current states determine the gate computations.

t0 t1

t5

t3 t4t2

h

0

c0

h

1

c1

h

2

c2
h

3

c3

h

4

c4

LSTM states Gating

20

Choosing LSTM vs. RNN?
Always consider the problem at hand.

▪ If sequences are many time steps long, an RNN may perform poorly.

▪ If training time is an issue, using a LSTM may be too cumbersome.

▪ Graphics processing units (GPUs) speed up all neural network training but are especially
recommended when training LSTMs on large datasets.

21

Use Python and Keras to Construct RNNs and LSTMs
for Time-Series Forecasting
Next up is a look at building these neural networks in Python.

▪ See notebook entitled Introduction_to_Deep_Learning_student.ipynb

Legal Notices and Disclaimers

This presentation is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS
SUMMARY.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software
or service activation. Performance varies depending on system configuration. Check with your system manufacturer or
retailer or learn more at intel.com.

Sample source code is released under the Intel Sample Source Code License Agreement.

Intel, the Intel logo, the Intel. Experience What’s Inside logo, and Intel. Experience What’s Inside are trademarks of Intel
Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2018, Intel Corporation. All rights reserved.

22

http://www.intel.com/
http://software.intel.com/en-us/articles/intel-sample-source-code-license-agreement/

23

What Is a LSTM?
Long short-term memory networks share RNNs’ conceptual structure.

▪ LSTM cells have the same role as RNN cells in sequential processing of the input
sequence.

▪ LSTM cells are internally more complex, with gating mechanisms and two states –
a “hidden state” and a ”cell state.”

t0 t1

LSTM
cell

t5

LSTM
cell

t3 t4

LSTM
cell

LSTM
cell

t2

LSTM
cell

24

LSTM vs. RNN?

Are LSTMs always better than simple RNNs?

▪ LSTMs are better suited for handling long-term
dependencies than RNNs

▪ However, they are much more complex,
requiring many more trainable weights

▪ The result is that they take longer to train
(slower backpropagation) and can be more
prone to overfitting

Applications in Python

26

Learning Objectives Recap

In this session you learned how to do the following:

• Explain why deep learning is used for time-series forecasting and some pros/cons.

• Describe how time series can be modeled using RNNs and LSTMs.

• Use Python to create these models.

