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Legal Information 
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, 
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY 
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, 
INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, 
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO 
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR 
OTHER INTELLECTUAL PROPERTY RIGHT. 

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or 
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH 
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, 
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS 
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, 
DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY 
WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS 
NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS. 

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not 
rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel 
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities 
arising from future changes to them. The information here is subject to change without notice. Do not finalize a 
design with this information. 

The products described in this document may contain design defects or errors known as errata which may cause 
the product to deviate from published specifications. Current characterized errata are available on request. 

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your 
product order. 

Copies of documents which have an order number and are referenced in this document, or other Intel literature, 
may be obtained by calling 1-800-548-4725, or go to: 

http://www.intel.com/design/literature.htm. 

Intel processor numbers are not a measure of performance.  Processor numbers differentiate features within each 
processor family, not across different processor families.  Go to: 
http://www.intel.com/products/processor_number/. 

Software and workloads used in performance tests may have been optimized for performance only on Intel 
microprocessors.  Performance tests, such as SYSmark and MobileMark, are measured using specific computer 
systems, components, software, operations and functions.  Any change to any of those factors may cause the 
results to vary.  You should consult other information and performance tests to assist you in fully evaluating your 
contemplated purchases, including the performance of that product when combined with other products. 

Intel, Intel logo, Intel Core, VTune, Xeon are trademarks of Intel Corporation in the U.S. and other countries. 

* Other names and brands may be claimed as the property of others. 

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission from Khronos. 

Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation. 

Copyright © 2014 Intel Corporation. All rights reserved. 

 

Optimization Notice 

 Intel's compilers may or may not optimize to the same degree for non-Intel 
microprocessors for optimizations that are not unique to Intel microprocessors. These 
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. 
Intel does not guarantee the availability, functionality, or effectiveness of any optimization 
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in 
this product are intended for use with Intel microprocessors. Certain optimizations not 
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to 
the applicable product User and Reference Guides for more information regarding the 
specific instruction sets covered by this notice. 
Notice revision #20110804 
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About Image From Buffer 
The goal of this sample is to demonstrate how to connect buffer-based kernel and image-based kernel 
into pipeline using the cl_khr_image2d_from_buffer extension. This feature is supported as 
extension in OpenCL 1.2 and became core functionality in OpenCL 2.0, so any 2.0 device must support 
it. The functionality enables creating OpenCL image objects, based on OpenCL buffer objects without 
extra coping, providing dual API to the same piece of memory. Once an image is created, you can use 
such image features as interpolation and border checking in one kernel, while continuing to access the 
same physical memory as a regular OpenCL buffer in another kernel. 

 

Main Steps 
One way to connect a buffer-based kernel and an image-based kernel is to use 
clEnqueueCopyBufferToImage or clEnqueueCopyImageToBuffer between kernels. This approach 
suffers from extra coping from one physical memory to another. The cl_khr_image2d_from_buffer 
extension enables you to create an image object directly from a buffer object and share the same 
physical memory. You can do the following to implement such memory sharing: 
1. The image-from-buffer functionality may be supported by OpenCL 1.2 devices as extension, so 

you need to check this support by requesting device info. To do so, get the device extension list 
and check that the list contains the cl_khr_image2d_from_buffer substring: 
 
err = clGetDeviceInfo( 
    device, 
    CL_DEVICE_EXTENSIONS, 
    extensions_len, 
    extensions, 
    NULL); 
The extensions is a char buffer with null-terminated string that should contain the list of space-
separated extension names. For example: 
 
“cl_intel_accelerator cl_intel_ctz cl_intel_d3d11_nv12_media_sharing 
cl_intel_dx9_media_sharing cl_intel_motion_estimation cl_khr_3d_image_writes 
cl_khr_byte_addressable_store cl_khr_d3d10_sharing cl_khr_d3d11_sharing 
cl_khr_depth_images cl_khr_dx9_media_sharing cl_khr_gl_depth_images 
cl_khr_gl_event cl_khr_gl_msaa_sharing cl_khr_gl_sharing 
cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics 
cl_khr_icd cl_khr_image2d_from_buffer cl_khr_local_int32_base_atomics 
cl_khr_local_int32_extended_atomics cl_khr_spir”. 
Note that OpenCL 2.0 has image from buffer as core functionality so for the OpenCL 2.0 device 
you don’t need to make such check as for OpenCL 1.2. 
 

2. There are two requirements from the specification namely CL_DEVICE_IMAGE_PITCH_ALIGNMENT 
and CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT for the image-from-buffer feature. You need to 
follow these requirements to make your application functional and performant. If you don’t follow 
the requirements, the image creation might fail. 
The pixels reside in the original buffer line-by-line with some pitch. So the access to pixel with 
(x,y) coordinate is made as buffer_ptr[y*pitch+x].  
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The pitch has to be equal or greater than the image width.  
All devices have specific requirements for pitch alignment. To obtain the pitch alignment in pixels 
for a specific device, use the clGetDeviceInfo function with the 
CL_DEVICE_IMAGE_PITCH_ALIGNMENT parameter: 
 
err = clGetDeviceInfo( 
    device, 
    CL_DEVICE_IMAGE_PITCH_ALIGNMENT, 
    sizeof(cl_uint), 
    &pitch_alignment, //pitch alignment in pixels 
    NULL); 
 
After getting the pitch alignment in pixels, you can calculate the correct pitch size, and (using the 
clCreateBuffer function) create a buffer with size in pixels equal to pitch_size*image_height. 
 
If you create buffer object using CL_MEM_USE_HOST_PTR and pointer to the memory, allocated on 
the host side, then additional restriction to the host pointer is applied. Restrictions are device-
specific. To get info on the restrictions, use the clGetDeviceInfo function with the 
CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT parameter. 
err = clGetDeviceInfo( 
    device, 
    CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT, 
    sizeof(cl_uint), 
    &ptr_alignment, //pointer alignment in pixels 
    NULL); 
 
Note that OpenCL 2.0 introduces SVM buffer. SVM is generally not supported for image objects. To 
create an image object from an SVM buffer, pass the SVM buffer as a pointer to the 
clCreateBuffer function as its host_ptr argument with the CL_MEM_USE_HOST_PTR flag. In this 
case clCreateBuffer succeeds and returns a valid non-zero buffer object. Then you can use this 
buffer object for image creation using the image-from-buffer functionality. 
 
An image, created from buffer, uses linear memory representation. It means that pixels are stored 
in the memory line-by-line. In some cases it may lead to different performance than regular image 
that usually use tiled storage.  
 

3. Finally, use the clCreateImage function to create an image from buffer. The 
cl_image_desc.mem_object field has to be initialized by the created buffer object and 
desc.image_row_pitch has to be initialized by pitch in bytes. 
 
cl_image_desc   desc; 
 
desc.image_type = CL_MEM_OBJECT_IMAGE2D; 
desc.image_row_pitch = pitch * sizeof(cl_float4); 
desc.mem_object = cl_buffer; 
 
cl_intermediate_image = clCreateImage( 
    context,  

Pixel(1,1) Pixel(1,2) Pixel(1,3) Pixel(1,4) Padding 

Pixel(2,1) Pixel(2,2) Pixel(2,3) Pixel(2,4) Padding 

Pixel(3,1) Pixel(3,2) Pixel(3,3) Pixel(3,4) Padding 

Pixel(4,1) Pixel(4,2) Pixel(4,3) Pixel(4,4) Padding 

width 

pitch 

Line 1 

Line 2 

Line 3 

Line 4 
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    CL_MEM_READ_WRITE,  
    &format,  
    &desc,  
    NULL,  
    &err); 
 
 

Sample Pipeline 

The ImageFromBuffer code sample simulates an image processing pipeline that consists of two 
kernels. Kernels might be different, but in this specific example the kernels implement color 
correction and geometry transformation. 

The color correction kernel makes simple gamma correction 4
1

inpout = . This operation adds light 
into dark areas. It works on single pixel without any border condition and interpolation. Therefor such 
kernel could be efficiently and easy implemented using regular OpenCL buffer. 

The geometry transformation kernel makes simple geometric transformation using the affine 
transform. To control the out-of-border access, the kernel should perform the border condition check. 
Also to make the result smooth, the kernel should perform an interpolation between pixels. For this 
case the OpenCL image is the best choice because images have built-in support for border and 
interpolation operations. So the kernel uses image as a source data. 

Both the buffer-based and the image-based kernels are connected into one pipeline using the 
cl_khr_image2d_from_buffer extension without extra copying from buffer physical memory to image 
physical memory. 

The following pictures represent the estimated processing result: the picture to the left is the source 
image, while the picture to the right is the result of the image processing pipeline. 

  
The pipeline needs two memory regions for storing: 

• Input and output results 

• Buffer output for the color correction kernel and at the same time image input for the 
transformation kernel 

The picture below shows data flow and the pipeline steps: 
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Sample Implementation 
The sample code implements the following steps: 

1. Makes initial OpenCL initialization, device, context, queue, and kernel creation. These 
operations reside in the OpenCLBasic and OpenCLProgramMultipleKernels classes, being 
regular for any OpenCL application and out of the sample scope.   

2. Gets device extension names and checks that the cl_khr_image2d_from_buffer extension is 
supported by the target device. The sample code uses the the clGetDeviceInfo function with 
the CL_DEVICE_EXTENSIONS flag. This step is not required for the OpenCL 2.0 device because 
the image from buffer is core functionality for OpenCL 2.0 and must be supported on all 
OpenCL 2.0 devices. 

3. Gets pitch alignment for buffer to be able to create and use the image from buffer 
functionality. The code obtains the pitch alignment value using clGetDeviceInfo and  
CL_DEVICE_IMAGE_PITCH_ALIGNMENT. The intermediate_image_pitch is calculated according 
to the obtained pitch alignment. 

4. Allocates buffers: 

a. Creates cl_inout_buffer initialized by the picture pixels.  

b. Allocates OpenCL cl_intermediate_buffer using regular clCreateBuffer to store 
intermediate result. The size of the buffer is intermediate_image_pitch 
*height*pixelsize.  
Then OpenCL cl_intermediate_image image is created by the clCreateImage 
function based on the cl_intermediate_buffer. This image can use the same 
physical memory as cl_intermediate_buffer. So, the code doesn’t need to copy 
data between the buffer and the image. 

OpenCL image from buffer  
cl_intermediate_image 

 
OpenCL buffer 

cl_intermediate_buffer 
 
 

2. Buffer-based 
gamma correction 

k l 

 

OpenCL buffer 
cl_inout_buffer 

 

3. Image-based  
transform kernel 

 

1. Read image 
from file 

 

4. Write image 
to file 
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5. Sets arguments for both kernels and sends them to the command queue for execution using 
the clSetKernelArg and the clEnqueueNDRangeKernel functions. 

6. The last step is to write the final data into a file.  

 

 

Understanding OpenCL Performance  
The image-from-buffer feature enables getting better performance for the pipeline with image and 
buffer processing. If the pipeline is implemented without this feature, then you have to use 
clEnqueueCopyBufferToImage to transfer data from cl_intermediate_buffer to 
cl_intermediate_image. As result the total execution time increases.  

The pictures below demonstrate the Intel VTune Amplifier XE timelines for different cases: 

• The first picture shows the results for pipeline without using the image-from-buffer feature. 
Additional copying happens between OpenCL kernels, which takes significant amount of time.  

•  
The second picture shows timeline for pipeline improved in case of using the image-from-
buffer feature. In this case we save around 1/3 of total pipeline time by removing extra 
clEnqueueCopyBufferToImage operation. 

 

Note, that the image-from-buffer feature gives more benefit for systems with less memory bandwidth 
than for the systems with higher memory bandwidth. Usually discrete GPU has faster memory then 
integrated GPU. Therefore, the image-from-buffer feature may provide more benefit for integrated 
GPU than for discret GPU.  

 

APIs Used 
This sample uses the following OpenCL host functions: 
 

• clGetDeviceInfo 
• clCreateBuffer 
• clCreateImage 
• clSetKernelArg  
• clEnqueueNDRangeKernel 
• clEnqueueMapBuffer 
• clEnqueueUnmapMemObject 

Run And Controlling the Sample 
The sample executable is a console application without any input parameters. The sample initializes 
OpenCL by looking for GPU device on the Intel platform. If there is no such device, the sample exits 
with an error message. Otherwise the image processing pipeline executes and the result saves as BMP 
file that can be opened to see the result. 
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