

Image From Buffer
Sample User's Guide

Intel® SDK for OpenCL™ Applications - Samples

Image From Buffer

2

Contents
Contents .. 2
Legal Information .. 3
About Image From Buffer ... 4
Main Steps ... 4
Sample Pipeline .. 6
Sample Implementation ... 7
Understanding OpenCL Performance .. 8
APIs Used .. 8
Run And Controlling the Sample .. 8
References ... 9

Legal Information

3

Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF,
DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY
WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS
NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not
rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. The information here is subject to change without notice. Do not finalize a
design with this information.

The products described in this document may contain design defects or errors known as errata which may cause
the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature,
may be obtained by calling 1-800-548-4725, or go to:

http://www.intel.com/design/literature.htm.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each
processor family, not across different processor families. Go to:
http://www.intel.com/products/processor_number/.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Intel, Intel logo, Intel Core, VTune, Xeon are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission from Khronos.

Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.

Copyright © 2014 Intel Corporation. All rights reserved.

Optimization Notice

 Intel's compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimization
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in
this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.
Notice revision #20110804

Image From Buffer

4

About Image From Buffer
The goal of this sample is to demonstrate how to connect buffer-based kernel and image-based kernel
into pipeline using the cl_khr_image2d_from_buffer extension. This feature is supported as
extension in OpenCL 1.2 and became core functionality in OpenCL 2.0, so any 2.0 device must support
it. The functionality enables creating OpenCL image objects, based on OpenCL buffer objects without
extra coping, providing dual API to the same piece of memory. Once an image is created, you can use
such image features as interpolation and border checking in one kernel, while continuing to access the
same physical memory as a regular OpenCL buffer in another kernel.

Main Steps
One way to connect a buffer-based kernel and an image-based kernel is to use
clEnqueueCopyBufferToImage or clEnqueueCopyImageToBuffer between kernels. This approach
suffers from extra coping from one physical memory to another. The cl_khr_image2d_from_buffer
extension enables you to create an image object directly from a buffer object and share the same
physical memory. You can do the following to implement such memory sharing:
1. The image-from-buffer functionality may be supported by OpenCL 1.2 devices as extension, so

you need to check this support by requesting device info. To do so, get the device extension list
and check that the list contains the cl_khr_image2d_from_buffer substring:

err = clGetDeviceInfo(
 device,
 CL_DEVICE_EXTENSIONS,
 extensions_len,
 extensions,
 NULL);
The extensions is a char buffer with null-terminated string that should contain the list of space-
separated extension names. For example:

“cl_intel_accelerator cl_intel_ctz cl_intel_d3d11_nv12_media_sharing
cl_intel_dx9_media_sharing cl_intel_motion_estimation cl_khr_3d_image_writes
cl_khr_byte_addressable_store cl_khr_d3d10_sharing cl_khr_d3d11_sharing
cl_khr_depth_images cl_khr_dx9_media_sharing cl_khr_gl_depth_images
cl_khr_gl_event cl_khr_gl_msaa_sharing cl_khr_gl_sharing
cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics
cl_khr_icd cl_khr_image2d_from_buffer cl_khr_local_int32_base_atomics
cl_khr_local_int32_extended_atomics cl_khr_spir”.
Note that OpenCL 2.0 has image from buffer as core functionality so for the OpenCL 2.0 device
you don’t need to make such check as for OpenCL 1.2.

2. There are two requirements from the specification namely CL_DEVICE_IMAGE_PITCH_ALIGNMENT
and CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT for the image-from-buffer feature. You need to
follow these requirements to make your application functional and performant. If you don’t follow
the requirements, the image creation might fail.
The pixels reside in the original buffer line-by-line with some pitch. So the access to pixel with
(x,y) coordinate is made as buffer_ptr[y*pitch+x].

Main Steps

5

The pitch has to be equal or greater than the image width.
All devices have specific requirements for pitch alignment. To obtain the pitch alignment in pixels
for a specific device, use the clGetDeviceInfo function with the
CL_DEVICE_IMAGE_PITCH_ALIGNMENT parameter:

err = clGetDeviceInfo(
 device,
 CL_DEVICE_IMAGE_PITCH_ALIGNMENT,
 sizeof(cl_uint),
 &pitch_alignment, //pitch alignment in pixels
 NULL);

After getting the pitch alignment in pixels, you can calculate the correct pitch size, and (using the
clCreateBuffer function) create a buffer with size in pixels equal to pitch_size*image_height.

If you create buffer object using CL_MEM_USE_HOST_PTR and pointer to the memory, allocated on
the host side, then additional restriction to the host pointer is applied. Restrictions are device-
specific. To get info on the restrictions, use the clGetDeviceInfo function with the
CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT parameter.
err = clGetDeviceInfo(
 device,
 CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT,
 sizeof(cl_uint),
 &ptr_alignment, //pointer alignment in pixels
 NULL);

Note that OpenCL 2.0 introduces SVM buffer. SVM is generally not supported for image objects. To
create an image object from an SVM buffer, pass the SVM buffer as a pointer to the
clCreateBuffer function as its host_ptr argument with the CL_MEM_USE_HOST_PTR flag. In this
case clCreateBuffer succeeds and returns a valid non-zero buffer object. Then you can use this
buffer object for image creation using the image-from-buffer functionality.

An image, created from buffer, uses linear memory representation. It means that pixels are stored
in the memory line-by-line. In some cases it may lead to different performance than regular image
that usually use tiled storage.

3. Finally, use the clCreateImage function to create an image from buffer. The
cl_image_desc.mem_object field has to be initialized by the created buffer object and
desc.image_row_pitch has to be initialized by pitch in bytes.

cl_image_desc desc;

desc.image_type = CL_MEM_OBJECT_IMAGE2D;
desc.image_row_pitch = pitch * sizeof(cl_float4);
desc.mem_object = cl_buffer;

cl_intermediate_image = clCreateImage(
 context,

Pixel(1,1) Pixel(1,2) Pixel(1,3) Pixel(1,4) Padding

Pixel(2,1) Pixel(2,2) Pixel(2,3) Pixel(2,4) Padding

Pixel(3,1) Pixel(3,2) Pixel(3,3) Pixel(3,4) Padding

Pixel(4,1) Pixel(4,2) Pixel(4,3) Pixel(4,4) Padding

width

pitch

Line 1

Line 2

Line 3

Line 4

Image From Buffer

6

 CL_MEM_READ_WRITE,
 &format,
 &desc,
 NULL,
 &err);

Sample Pipeline

The ImageFromBuffer code sample simulates an image processing pipeline that consists of two
kernels. Kernels might be different, but in this specific example the kernels implement color
correction and geometry transformation.

The color correction kernel makes simple gamma correction 4
1

inpout = . This operation adds light
into dark areas. It works on single pixel without any border condition and interpolation. Therefor such
kernel could be efficiently and easy implemented using regular OpenCL buffer.

The geometry transformation kernel makes simple geometric transformation using the affine
transform. To control the out-of-border access, the kernel should perform the border condition check.
Also to make the result smooth, the kernel should perform an interpolation between pixels. For this
case the OpenCL image is the best choice because images have built-in support for border and
interpolation operations. So the kernel uses image as a source data.

Both the buffer-based and the image-based kernels are connected into one pipeline using the
cl_khr_image2d_from_buffer extension without extra copying from buffer physical memory to image
physical memory.

The following pictures represent the estimated processing result: the picture to the left is the source
image, while the picture to the right is the result of the image processing pipeline.

The pipeline needs two memory regions for storing:

• Input and output results

• Buffer output for the color correction kernel and at the same time image input for the
transformation kernel

The picture below shows data flow and the pipeline steps:

Sample Implementation

7

Sample Implementation
The sample code implements the following steps:

1. Makes initial OpenCL initialization, device, context, queue, and kernel creation. These
operations reside in the OpenCLBasic and OpenCLProgramMultipleKernels classes, being
regular for any OpenCL application and out of the sample scope.

2. Gets device extension names and checks that the cl_khr_image2d_from_buffer extension is
supported by the target device. The sample code uses the the clGetDeviceInfo function with
the CL_DEVICE_EXTENSIONS flag. This step is not required for the OpenCL 2.0 device because
the image from buffer is core functionality for OpenCL 2.0 and must be supported on all
OpenCL 2.0 devices.

3. Gets pitch alignment for buffer to be able to create and use the image from buffer
functionality. The code obtains the pitch alignment value using clGetDeviceInfo and
CL_DEVICE_IMAGE_PITCH_ALIGNMENT. The intermediate_image_pitch is calculated according
to the obtained pitch alignment.

4. Allocates buffers:

a. Creates cl_inout_buffer initialized by the picture pixels.

b. Allocates OpenCL cl_intermediate_buffer using regular clCreateBuffer to store
intermediate result. The size of the buffer is intermediate_image_pitch
*height*pixelsize.
Then OpenCL cl_intermediate_image image is created by the clCreateImage
function based on the cl_intermediate_buffer. This image can use the same
physical memory as cl_intermediate_buffer. So, the code doesn’t need to copy
data between the buffer and the image.

OpenCL image from buffer
cl_intermediate_image

OpenCL buffer

cl_intermediate_buffer

2. Buffer-based
gamma correction

k l

OpenCL buffer
cl_inout_buffer

3. Image-based
transform kernel

1. Read image
from file

4. Write image
to file

Image From Buffer

8

5. Sets arguments for both kernels and sends them to the command queue for execution using
the clSetKernelArg and the clEnqueueNDRangeKernel functions.

6. The last step is to write the final data into a file.

Understanding OpenCL Performance
The image-from-buffer feature enables getting better performance for the pipeline with image and
buffer processing. If the pipeline is implemented without this feature, then you have to use
clEnqueueCopyBufferToImage to transfer data from cl_intermediate_buffer to
cl_intermediate_image. As result the total execution time increases.

The pictures below demonstrate the Intel VTune Amplifier XE timelines for different cases:

• The first picture shows the results for pipeline without using the image-from-buffer feature.
Additional copying happens between OpenCL kernels, which takes significant amount of time.

•
The second picture shows timeline for pipeline improved in case of using the image-from-
buffer feature. In this case we save around 1/3 of total pipeline time by removing extra
clEnqueueCopyBufferToImage operation.

Note, that the image-from-buffer feature gives more benefit for systems with less memory bandwidth
than for the systems with higher memory bandwidth. Usually discrete GPU has faster memory then
integrated GPU. Therefore, the image-from-buffer feature may provide more benefit for integrated
GPU than for discret GPU.

APIs Used
This sample uses the following OpenCL host functions:

• clGetDeviceInfo
• clCreateBuffer
• clCreateImage
• clSetKernelArg
• clEnqueueNDRangeKernel
• clEnqueueMapBuffer
• clEnqueueUnmapMemObject

Run And Controlling the Sample
The sample executable is a console application without any input parameters. The sample initializes
OpenCL by looking for GPU device on the Intel platform. If there is no such device, the sample exits
with an error message. Otherwise the image processing pipeline executes and the result saves as BMP
file that can be opened to see the result.

References

9

References
http://www.khronos.org/registry/cl/specs/opencl-1.2-extensions.pdf

http://en.wikipedia.org/wiki/Gamma_correction

http://en.wikipedia.org/wiki/Transformation_matrix

https://software.intel.com/en-us/intel-vtune-amplifier-xe

http://www.khronos.org/registry/cl/specs/opencl-1.2-extensions.pdf
http://en.wikipedia.org/wiki/Gamma_correction
http://en.wikipedia.org/wiki/Transformation_matrix
https://software.intel.com/en-us/intel-vtune-amplifier-xe

	Image From Buffer
Sample User's GuideIntel
	Contents
	Legal Information
	About Image From Buffer
	Main Steps
	Sample Pipeline
	Sample Implementation
	Understanding OpenCL Performance
	APIs Used
	Run And Controlling the Sample
	References

