# Details

`= {I`

`i`

_{1},

`i`

_{2}, …,

`i`

_{m}} be a set of items (products) and subset

`T`

`is a transaction associated with item setI`

`. The association rule has the form:I`

`X`

`, whereY`

`X`

`,I`

`Y`

`, and intersection ofI`

`andX`

`is empty:Y`

`X`

`=Y`

*)itemset*

`is calledX`

`, while the right-hand-side itemsetantecedent`

`is calledY`

`of the rule.consequent`

`= {D`

`T`

_{1},

`T`

_{2}, …,

`T`

_{n}} be a set of transactions, each associated with item set

`Item subsetI.`

`X`

`has supportI`

`in the transaction sets`

`ifD`

`percent of transactions in D containss`

`.X`

`X`

`in the transaction setY`

`holds with confidenceD`

`ifc`

`percent of transactions inc`

`that containD`

`also containsX`

`. Confidence of the rule can be represented as conditional probability:Y`

`(confidence`

`X`

`) = support (Y`

`X`

`)/support(Y`

`).X`

`= {D`

`T`

_{1},

`T`

_{2}, …,

`T`

_{n}}, the minimum support

`and minimum confidences`

`discover all item setsc`

`with support greater thanX`

`and generate all association ruless`

`X`

`with confidence greater thanY`

`.c`