Developer Reference

Contents

Example of Using RSA Primitive Functions

The following example illustrates the use of RSA primitives. The example uses the
BigNumber
class and functions creating some cryptographic contexts, whose source code can be found in Appendix
B
.
Use of RSA Primitives 
// P prime factor BigNumber P("0xEECFAE81B1B9B3C908810B10A1B5600199EB9F44AEF4FDA493B81A9E3D84F632" "124EF0236E5D1E3B7E28FAE7AA040A2D5B252176459D1F397541BA2A58FB6599"); // Q prime factor BigNumber Q("0xC97FB1F027F453F6341233EAAAD1D9353F6C42D08866B1D05A0F2035028B9D86" "9840B41666B42E92EA0DA3B43204B5CFCE3352524D0416A5A441E700AF461503"); // P's CRT exponent BigNumber dP("0x54494CA63EBA0337E4E24023FCD69A5AEB07DDDC0183A4D0AC9B54B051F2B13E" "D9490975EAB77414FF59C1F7692E9A2E202B38FC910A474174ADC93C1F67C981"); // Q's CRT exponent BigNumber dQ("0x471E0290FF0AF0750351B7F878864CA961ADBD3A8A7E991C5C0556A94C3146A7" "F9803F8F6F8AE342E931FD8AE47A220D1B99A495849807FE39F9245A9836DA3D"); // CRT coefficient BigNumber invQ("0xB06C4FDABB6301198D265BDBAE9423B380F271F73453885093077FCD39E2119F" "C98632154F5883B167A967BF402B4E9E2E0F9656E698EA3666EDFB25798039F7"); // rsa modulus N = P*Q BigNumber N("0xBBF82F090682CE9C2338AC2B9DA871F7368D07EED41043A440D6B6F07454F51F" "B8DFBAAF035C02AB61EA48CEEB6FCD4876ED520D60E1EC4619719D8A5B8B807F" "AFB8E0A3DFC737723EE6B4B7D93A2584EE6A649D060953748834B2454598394E" "E0AAB12D7B61A51F527A9A41F6C1687FE2537298CA2A8F5946F8E5FD091DBDCB"); // private exponent BigNumber D("0xA5DAFC5341FAF289C4B988DB30C1CDF83F31251E0668B42784813801579641B2" "9410B3C7998D6BC465745E5C392669D6870DA2C082A939E37FDCB82EC93EDAC9" "7FF3AD5950ACCFBC111C76F1A9529444E56AAF68C56C092CD38DC3BEF5D20A93" "9926ED4F74A13EDDFBE1A1CECC4894AF9428C2B7B8883FE4463A4BC85B1CB3C1"); // public exponent BigNumber E("0x11"); int RSA_sample(void) { int keyCtxSize; // (bit) size of key components int bitsN = N.BitSize(); int bitsE = E.BitSize(); int bitsP = P.BitSize(); int bitsQ = Q.BitSize(); // define and setup public key ippsRSA_GetSizePublicKey(bitsN, bitsE, &keyCtxSize); IppsRSAPublicKeyState* pPub = (IppsRSAPublicKeyState*)( new Ipp8u [keyCtxSize] ); ippsRSA_InitPublicKey(bitsN, bitsE, pPub, keyCtxSize); ippsRSA_SetPublicKey(N, E, pPub); // define and setup (type2) private key ippsRSA_GetSizePrivateKeyType2(bitsP, bitsQ, &keyCtxSize); IppsRSAPrivateKeyState* pPrv = (IppsRSAPrivateKeyState*)( new Ipp8u [keyCtxSize] ); ippsRSA_InitPrivateKeyType2(bitsP, bitsQ, pPrv, keyCtxSize); ippsRSA_SetPrivateKeyType2(P, Q, dP, dQ, invQ, pPrv); // allocate scratch buffer int buffSizePublic; ippsRSA_GetBufferSizePublicKey(&buffSizePublic, pPub); int buffSizePrivate; ippsRSA_GetBufferSizePrivateKey(&buffSizePrivate, pPrv); int buffSize = max(buffSizePublic, buffSizePrivate); Ipp8u* scratchBuffer = NULL; scratchBuffer = new Ipp8u [buffSize]; // error flag int error = 0; do { // // validate keys // // random generator IppsPRNGState* pRand = newPRNG(); // prime generator IppsPrimeState* pPrimeG = newPrimeGen(P.BitSize()); int validateRes = IPP_IS_INVALID; ippsRSA_ValidateKeys(&validateRes, pPub, pPrv, NULL, scratchBuffer, 10, pPrimeG, ippsPRNGen, pRand); // delete geterators deletePrimeGen(pPrimeG); deletePRNG(pRand); if(IPP_IS_VALID!=validateRes) { cout <<"validation fail" << endl; error = 1; break; } // known plain- and ciper-texts BigNumber kat_PT("0x00EB7A19ACE9E3006350E329504B45E2CA82310B26DCD87D5C68F1EEA8F55267" "C31B2E8BB4251F84D7E0B2C04626F5AFF93EDCFB25C9C2B3FF8AE10E839A2DDB" "4CDCFE4FF47728B4A1B7C1362BAAD29AB48D2869D5024121435811591BE392F9" "82FB3E87D095AEB40448DB972F3AC14F7BC275195281CE32D2F1B76D4D353E2D"); BigNumber kat_CT("0x1253E04DC0A5397BB44A7AB87E9BF2A039A33D1E996FC82A94CCD30074C95DF7" "63722017069E5268DA5D1C0B4F872CF653C11DF82314A67968DFEAE28DEF04BB" "6D84B1C31D654A1970E5783BD6EB96A024C2CA2F4A90FE9F2EF5C9C140E5BB48" "DA9536AD8700C84FC9130ADEA74E558D51A74DDF85D8B50DE96838D6063E0955"); // // encrypt message // BigNumber ct(0, N.DwordSize()); ippsRSA_Encrypt(kat_PT, ct, pPub, scratchBuffer); if(ct!=kat_CT) { cout <<"encryption fail" << endl; error = 1; break; } // // decrypt message // BigNumber rt(0, N.DwordSize()); ippsRSA_Decrypt(kat_CT, rt, pPrv, scratchBuffer); if(rt!=kat_PT) { cout <<"decryption fail" << endl; error = 1; break; } } while(0); delete [] scratchBuffer; delete [] (Ipp8u*) pPub; // remove sensitive data before release ippsRSA_InitPrivateKeyType2(bitsP, bitsQ, pPrv, keyCtxSize); delete [] (Ipp8u*) pPrv; return error==0; }

Product and Performance Information

1

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.