Hypot
Hypot
Computes a square root of sum of two squared elements.
Syntax
IppStatus ippsHypot_32f_A11 (const Ipp32f*
pSrc1
, const Ipp32f
pSrc2
, Ipp32f*
pDst
, Ipp32s
len
);
IppStatus ippsHypot_32f_A21 (const Ipp32f*
pSrc1
, const Ipp32f*
pSrc2
, Ipp32f*
pDst
, Ipp32s
len
);
IppStatus ippsHypot_32f_A24 (const Ipp32f*
pSrc1
, const Ipp32f*
pSrc2
, Ipp32f*
pDst
, Ipp32s
len
);
IppStatus ippsHypot_64f_A26 (const Ipp64f*
pSrc1
, const Ipp64f*
pSrc2
, Ipp64f*
pDst
, Ipp32s
len
);
IppStatus ippsHypot_64f_A50 (const Ipp64f*
pSrc1
, const Ipp64f*
pSrc2
, Ipp64f*
pDst
, Ipp32s
len
);
IppStatus ippsHypot_64f_A53 (const Ipp64f*
pSrc1
, const Ipp64f*
pSrc2
, Ipp64f*
pDst
, Ipp32s
len
);
Include Files
ippvm.h
Domain Dependencies
Headers:
ippcore.h
Libraries:
ippcore.lib
Parameters
- pSrc1
- Pointer to the first source vector.
- pSrc2
- Pointer to the second source vector.
- pDst
- Pointer to the destination vector.
- len
- Number of elements in the vectors.
Description
This function computes square of each element of the
pSrc1
and pSrc2
vectors, sums corresponding elements, computes square roots of each sum and stores the result in the corresponding element of pDst
.For single precision data:
function flavor
ippsHypot_32f_A11
guarantees 11 correctly rounded bits of significand, or at least 3 exact decimal digits;function flavor
ippsHypot_32f_A21
guarantees 21 correctly rounded bits of significand, or 4 ulps, or about 6 exact decimal digits;function flavor
ippsHypot_32f_A24
guarantees 24 correctly rounded bits of significand, including the implied bit, with the maximum guaranteed error within 1 ulp.For double precision data:
function flavor
ippsHypot_64f_A26
guarantees 26 correctly rounded bits of significand, or 6.7E+7 ulps, or approximately 8 exact decimal digits;function flavor
ippsHypot_64f_A50
guarantees 50 correctly rounded bits of significand, or 4 ulps, or approximately 15 exact decimal digits;function flavor
ippsHypot_64f_A53
guarantees 53 correctly rounded bits of significand, including the implied bit, with the maximum guaranteed error within 1 ulp.The computation is performed as follows:
pDst
[n] = ((pSrc1
[n])2
+ (pSrc2
[n])2
)1/2
0 ≤ n <
.len
Return Values
- ippStsNoErr
- Indicates no error.
- ippStsNullPtrErr
- Indicates an error whenpSrc1orpSrc2orpDstpointer isNULL.
- ippStsSizeErr
- Indicates an error whenlenis less than or equal to 0.
Example
The example below shows how to use the function
ippsHypot
.IppStatus ippsHypot_32f_A21_sample(void)
{
const Ipp32f x1[4] = {0.483, 0.565, 0.776, 0.252}
const Ipp32f x2[4] = {0.823, 0.991, 0.411, 0.692};
Ipp32f y[4];
IppStatus st = ippsHypot_32f_A21( x1, x2, y, 4 );
printf(" ippsHypot_32f_A21:\n");
printf(" x1 = %.3f %.3f %.3f %.3f \n", x1[0], x1[1], x1[2], x1[3]);
printf(" x2 = %.3f %.3f %.3f %.3f \n", x2[0], x2[1], x2[2], x2[3]);
printf(" y = %.3f %.3f %.3f %.3f \n", y[0], y[1], y[2], y[3]);
return st;
}
Output results:
ippsHypot_32f_A21:
x1 = 0.483 0.565 0.776 0.252
x2 = 0.823 0.991 0.411 0.692
y = 0.954 1.141 0.878 0.736