FilterColumnPipeline, FilterColumnPipeline_Low
Apply the filter to image columns.
Syntax
Case 1: Operation on integer data
IppStatus ippiFilterColumnPipeline_<mod>(const Ipp<srcDatatype>**
ppSrc
, Ipp<dstDatatype>*
pDst
, int
dstStep
, IppiSize
roiSize
, const Ipp<srcDatatype>*
pKernel
, int
kernelSize
, int
divisor
, Ipp8u*
pBuffer
);
Supported values for
mod
:16s_C1R | 16s8u_C1R | 16s8s_C1R | 16u_C1R |
16s_C3R | 16s8u_C3R | 16s8s_C3R | 16u_C3R |
IppStatus ippiFilterColumnPipeline_Low_16s_C1R(const Ipp16s**
ppSrc
, Ipp16s*
pDst
, int
dstStep
, IppiSize
roiSize
, const Ipp16s*
pKernel
, int
kernelSize
, int
divisor
, Ipp8u*
pBuffer
);
IppStatus ippiFilterColumnPipeline_Low_16s_C3R(const Ipp16s**
ppSrc
, Ipp16s*
pDst
, int
dstStep
, IppiSize
roiSize
, const Ipp16s*
pKernel
, int
kernelSize
, int
divisor
, Ipp8u*
pBuffer
);
Case 2: Operation on floating-point data
IppStatus ippiFilterColumnPipeline_<mod>(const Ipp<datatype>**
ppSrc
, Ipp<datatype>*
pDst
, int
dstStep
, IppiSize
roiSize
, const Ipp<datatype>*
pKernel
, int
kernelSize
, Ipp8u*
pBuffer
);
Supported values for
mod
:32f_C1R |
32f_C3R |
Include Files
ippcv.h
Domain Dependencies
Headers:
ippcore.h
,
ippvm.h
,
ipps.h
,
ippi.h
Libraries:
ippcore.lib
,
ippvm.lib
,
ipps.lib
,
ippi.lib
Parameters
- ppSrc
- Double pointer to the source image ROI.
- pDst
- Pointer to the destination image ROI.
- dstStep
- Distance in bytes between starts of consecutive lines in the destination image.
- roiSize
- Size of the destination ROI in pixels.
- pKernel
- Pointer to the strow kernel values.
- kernelSize
- Size of the kernel in pixels.
- divisor
- Value by which the computed result is divided (for operations on integer data only).
- pBuffer
- Pointer to the working buffer.
Description
This function operates with ROI (see Regions of Interest in Intel IPP).
The function
ippiFilterColumnPipeline_Low
performs calculation exclusively with the 16s-data, and the input data must be in the range ensuring that the overflow does not occur during calculation and the result can be represented by a 32-bit integer number.These functions apply the column filter of the separable convolution kernel to the source image
pSrc
. The filter coefficients are placed in the reversed order. For integer data:

and for floating point data:

Here
j = 0, ...
, roiSize.width
-1i=0,...
.roiSize.height
-1The size of the source image is
(
.roiSize.height
+ kernelSize
- 1) * roiSize.width
The functions requires the external buffer
pBuffer
, its size should be previously computed by the functions ippiFilterColumnPipelineGetBufferSize
and ippiFilterColumnPipelineGetBufferSize_Low
respectively.Return Values
- ippStsNoErr
- Indicates no error. Any other value indicates an error.
- ippStsNullPtrErr
- Indicates an error condition if one of the specified pointers isNULL.
- ippStsSizeErr
- Indicates an error condition ifroiSizehas a field with a zero or negative value.
- ippStsStepErr
- Indicates an error condition ifsrcStepordstStepis less thanroiSize.width* <pixelSize>
- ippStsNotEvenStepErr
- Indicates an error condition if one of the step values is not divisible by 4 for floating-point images, or by 2 for short-integer images.
- ippStsBadArgErr
- Indicates an error condition ifdivisoris equal to 0.
Example
/*******************************************************************************
* Copyright 2015-2021 Intel Corporation.
*
* This software and the related documents are Intel copyrighted materials, and
* your use of them is governed by the express license under which they were
* provided to you (License). Unless the License provides otherwise, you may not
* use, modify, copy, publish, distribute, disclose or transmit this software or
* the related documents without Intel's prior written permission.
*
* This software and the related documents are provided as is, with no express
* or implied warranties, other than those that are expressly stated in the
* License.
*******************************************************************************/
// An example of performing The code example shows how these functions can be used to organize the separable convolution as a step of
// image processing pipeline.implemented with Intel(R) Integrated Primitives (Intel(R) IPP) functions :
// ippiFilterRowBorderPipelineGetBufferSize_Low_16s_C1R
// ippiFilterColumnPipeline_Low_16s_C1R
// ippiFilterColumnPipelineGetBufferSize_Low_16s_C1R
// ippiFilterRowBorderPipeline_Low_16s_C1R
#include <stdio.h>
#include "ipp.h"
#define WIDTH 128 /* image width */
#define HEIGHT 64 /* image height */
/* Next two defines are created to simplify code reading and understanding */
#define EXIT_MAIN exitLine: /* Label for Exit */
#define check_sts(st) if((st) != ippStsNoErr) goto exitLine; /* Go to Exit if Intel(R) IPP function returned status different from ippStsNoErr */
/* Results of ippMalloc() are not validated because Intel(R) IPP functions perform bad arguments check and will return an appropriate status */
int main(void)
{
IppStatus status = ippStsNoErr;
const Ipp16s **pGet = NULL;
Ipp16s* src = NULL, *dst = NULL;
int kernelSize = 3;
int xAnchor = kernelSize >> 1; /* The anchor value, (0 <= xAnchor < kernelSize) */
Ipp16s pKerX[3] = { 1, 2, 1 }, pKerY[3] = { 1, 0, 1 }; /* The pointer to the kernels */
Ipp16s* pSrc = NULL, *pDst = NULL; /* Pointers to source/destination images */
int srcStep = 0, dstStep = 0; /* Steps, in bytes, through the source/destination images */
IppiSize roiSize = { WIDTH, HEIGHT }; /* Size of source/destination ROI in pixels */
IppiSize roi = { WIDTH, 1 }; /* Size of destination ROI in pixels */
int divisor = 1; /* The value to divide output pixels by */
Ipp8u borderValue = 0;
Ipp8u *pBufRow = NULL, *pBufCol = NULL;/* Pointer to the work buffer */
int sizeRow = 0, sizeCol = 0; /* Common work buffer size */
int todo = roiSize.height, bufLen;
int mStep = (roiSize.width + 7)&(~7);
int sStep = 0, dStep = 0;
bufLen = mStep * 3 *sizeof(Ipp16s) + 4*sizeof(Ipp16s*);
pGet = (const Ipp16s**)ippsMalloc_8u(bufLen);
pSrc = ippiMalloc_16s_C1(roiSize.width, roiSize.height, &srcStep);
pDst = ippiMalloc_16s_C1(roiSize.width, roiSize.height, &dstStep);
dst = pDst; src = pSrc;
sStep = srcStep >> 1, dStep = dstStep >> 1;
pGet[0] = pGet[1] = (Ipp16s*)(pGet + 4);
pGet[2] = pGet[1] + mStep;
pGet[3] = pGet[2] + mStep;
check_sts( status = ippiFilterRowBorderPipelineGetBufferSize_Low_16s_C1R(roiSize, 3, &sizeRow) )
check_sts( status = ippiFilterColumnPipelineGetBufferSize_Low_16s_C1R(roiSize, 3, &sizeCol) )
pBufRow = ippsMalloc_8u(sizeRow);
pBufCol = ippsMalloc_8u(sizeCol);
check_sts( status = ippiFilterRowBorderPipeline_Low_16s_C1R(pSrc, srcStep, ( Ipp16s**)pGet, roi, pKerX, kernelSize, xAnchor, ippBorderRepl, borderValue, divisor, pBufRow) )
todo--;
if (todo==0)
{
pGet[2] = pGet[0];
}
else {
pGet[2] = pGet[0] + mStep; pGet[3] = pGet[2] + mStep;
for (; todo>0;src += sStep, dst += dStep, todo--)
{
check_sts( status = ippiFilterRowBorderPipeline_Low_16s_C1R(src, srcStep, (Ipp16s**)(pGet + 2), roi, pKerX, kernelSize, xAnchor, ippBorderRepl, borderValue, divisor, pBufRow) )
check_sts( status = ippiFilterColumnPipeline_Low_16s_C1R(pGet, dst, dstStep, roi, pKerY, kernelSize, divisor, pBufCol) )
pGet[0] = pGet[1]; pGet[1] = pGet[2]; pGet[2] = pGet[3]; pGet[3] = pGet[0];
}
}
check_sts( status = ippiFilterColumnPipeline_Low_16s_C1R(pGet, dst, dstStep, roi, pKerY, kernelSize, divisor, pBufCol) )
EXIT_MAIN
ippiFree(pSrc);
ippsFree(pBufRow);
ippsFree(pBufCol);
ippiFree(pDst);
printf("Exit status %d (%s)\n", (int)status, ippGetStatusString(status));
return (int)status;
}