Developer Reference

Contents

p?org2l/p?ung2l

Generates all or part of the orthogonal/unitary matrix Q from a QL factorization determined by
p?geqlf
(unblocked algorithm).

Syntax

void
psorg2l
(
MKL_INT
*m
,
MKL_INT
*n
,
MKL_INT
*k
,
float
*a
,
MKL_INT
*ia
,
MKL_INT
*ja
,
MKL_INT
*desca
,
float
*tau
,
float
*work
,
MKL_INT
*lwork
,
MKL_INT
*info
);
void
pdorg2l
(
MKL_INT
*m
,
MKL_INT
*n
,
MKL_INT
*k
,
double
*a
,
MKL_INT
*ia
,
MKL_INT
*ja
,
MKL_INT
*desca
,
double
*tau
,
double
*work
,
MKL_INT
*lwork
,
MKL_INT
*info
);
void
pcung2l
(
MKL_INT
*m
,
MKL_INT
*n
,
MKL_INT
*k
,
MKL_Complex8
*a
,
MKL_INT
*ia
,
MKL_INT
*ja
,
MKL_INT
*desca
,
MKL_Complex8
*tau
,
MKL_Complex8
*work
,
MKL_INT
*lwork
,
MKL_INT
*info
);
void
pzung2l
(
MKL_INT
*m
,
MKL_INT
*n
,
MKL_INT
*k
,
MKL_Complex16
*a
,
MKL_INT
*ia
,
MKL_INT
*ja
,
MKL_INT
*desca
,
MKL_Complex16
*tau
,
MKL_Complex16
*work
,
MKL_INT
*lwork
,
MKL_INT
*info
);
Include Files
  • mkl_scalapack.h
Description
The
p?org2l/p?ung2l
function
generates an
m
-by-
n
real/complex distributed matrix
Q
denoting
A
(
ia
:
ia
+
m
-1,
ja
:
ja
+
n
-1)
with orthonormal columns, which is defined as the last
n
columns of a product of
k
elementary reflectors of order
m
:
Q
=
H
(
k
)*...*
H
(2)*
H
(1) as returned by
p?geqlf
.
Input Parameters
m
(global)
The number of rows in the distributed submatrix
Q
.
m
0
.
n
(global)
The number of columns in the distributed submatrix
Q
.
m
n
0
.
k
(global)
The number of elementary reflectors whose product defines the matrix
Q
.
n
k
0
.
a
Pointer into the local memory to an array of size
lld_a
*
LOCc
(
ja
+
n
-1)
.
On entry, the
j
-th column
of the matrix stored in
a
must contain the vector that defines the elementary reflector
H
(
j
),
ja
+
n-k
j
ja
+
n-k
, as returned by
p?geqlf
in the
k
columns of its distributed matrix argument
A
(
ia
:*,
ja
+
n-k
:
ja
+
n
-1)
.
ia
(global)
The row index in the global matrix
A
indicating the first row of sub(
A
).
ja
(global)
The column index in the global matrix
A
indicating the first column of sub(
A
).
desca
(global and local) array of size
dlen_
. The array descriptor for the distributed matrix
A
.
tau
(local)
Array of size
LOCc
(
ja
+
n
-1)
.
tau
[
j
]
contains the scalar factor of the elementary reflector
H
(
j
+1),
j
= 0, 1, ...,
LOCc
(
ja
+
n
-1)
-1
, as returned by
p?geqlf
.
work
(local)
Workspace array of size
lwork
.
lwork
(local or global)
The size of the array
work
.
lwork
is local input and must be at least
lwork
mpa
0 + max(1,
nqa
0)
, where
iroffa
=
mod
(
ia
-1,
mb_a
),
icoffa
= mod(
ja
-1,
nb_a
)
,
iarow
=
indxg2p
(
ia
,
mb_a
,
myrow
,
rsrc_a
,
nprow
)
,
iacol
=
indxg2p
(
ja
,
nb_a
,
mycol
,
csrc_a
,
npcol
)
,
mpa
0 =
numroc
(
m
+
iroffa
,
mb_a
,
myrow
,
iarow
,
nprow
)
,
nqa
0 =
numroc
(
n
+
icoffa
,
nb_a
,
mycol
,
iacol
,
npcol
)
.
indxg2p
and
numroc
are ScaLAPACK tool functions;
myrow
,
mycol
,
nprow
, and
npcol
can be determined by calling the
function
blacs_gridinfo
.
If
lwork
= -1
, then
lwork
is global input and a workspace query is assumed; the
function
only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by
pxerbla
.
Output Parameters
a
On exit, this array contains the local pieces of the
m
-by-
n
distributed matrix
Q
.
work
On exit,
work
[0]
returns the minimal and optimal
lwork
.
info
(local).
= 0
: successful exit
< 0
: if the
i
-th argument is an array and the
j
-th entry
, indexed
j
-1,
had an illegal value,
then
info
= - (
i
*100 +
j
),
if the
i
-th argument is a scalar and had an illegal value,
then
info
= -
i
.

Product and Performance Information

1

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804