## Developer Reference

• 2020.2
• 07/15/2020
• Public Content
Contents

# ?gemm3m

Computes a scalar-matrix-matrix product using matrix multiplications and adds the result to a scalar-matrix product.

## Syntax

Include Files
• mkl.fi
,
blas.f90
Description
The
?gemm3m
routines perform a matrix-matrix operation with general complex matrices. These routines are similar to the
?gemm
routines, but they use fewer matrix multiplication operations
(see
Application Notes
below)
.
The operation is defined as
`C := alpha*op(A)*op(B) + beta*C,`
where:
op(
x
)
is one of
op(
x
) =
x
, or
op(
x
) =
x
'
, or
op(
x
) = conjg(
x
')
,
alpha
and
beta
are scalars,
A
,
B
and
C
are matrices:
op(
A
)
is an
m
-by-
k
matrix,
op(
B
)
is a
k
-by-
n
matrix,
C
is an
m
-by-
n
matrix.
Input Parameters
transa
CHARACTER*1
.
Specifies the form of
op(
A
)
used in the matrix multiplication:
if
transa
= 'N'
or
'n'
, then
op(
A
) =
A
;
if
transa
= 'T'
or
't'
, then
op(
A
) =
A
'
;
if
transa
= 'C'
or
'c'
, then
op(
A
) = conjg(
A
')
.
transb
CHARACTER*1
.
Specifies the form of
op(
B
)
used in the matrix multiplication:
if
transb
= 'N'
or
'n'
, then
op(
B
) =
B
;
if
transb
= 'T'
or
't'
, then
op(
B
) =
B
'
;
if
transb
= 'C'
or
'c'
, then
op(
B
) = conjg(
B
')
.
m
INTEGER
.
Specifies the number of rows of the matrix
op(
A
)
and of the matrix
C
. The value of
m
must be at least zero.
n
INTEGER
.
Specifies the number of columns of the matrix
op(
B
)
and the number of columns of the matrix
C
.
The value of
n
must be at least zero.
k
INTEGER
.
Specifies the number of columns of the matrix
op(
A
)
and the number of rows of the matrix
op(
B
)
.
The value of
k
must be at least zero.
alpha