Developer Reference

  • 2020.2
  • 07/15/2020
  • Public Content
Contents

?gemm

Computes a matrix-matrix product with general matrices.

Syntax

call sgemm
(
transa
,
transb
,
m
,
n
,
k
,
alpha
,
a
,
lda
,
b
,
ldb
,
beta
,
c
,
ldc
)
call dgemm
(
transa
,
transb
,
m
,
n
,
k
,
alpha
,
a
,
lda
,
b
,
ldb
,
beta
,
c
,
ldc
)
call cgemm
(
transa
,
transb
,
m
,
n
,
k
,
alpha
,
a
,
lda
,
b
,
ldb
,
beta
,
c
,
ldc
)
call zgemm
(
transa
,
transb
,
m
,
n
,
k
,
alpha
,
a
,
lda
,
b
,
ldb
,
beta
,
c
,
ldc
)
call scgemm
(
transa
,
transb
,
m
,
n
,
k
,
alpha
,
a
,
lda
,
b
,
ldb
,
beta
,
c
,
ldc
)
call dzgemm
(
transa
,
transb
,
m
,
n
,
k
,
alpha
,
a
,
lda
,
b
,
ldb
,
beta
,
c
,
ldc
)
call gemm
(
a
,
b
,
c
[
,
transa
]
[
,
transb
]
[
,
alpha
]
[
,
beta
]
)
Include Files
  • mkl.fi
    ,
    blas.f90
Description
The
?gemm
routines compute a scalar-matrix-matrix product and add the result to a scalar-matrix product, with general matrices. The operation is defined as
C
:=
alpha
*op(
A
)*op(
B
) +
beta
*C
where:
op(
X
)
is one of
op(
X
) =
X
, or
op(
X
) =
X
T
, or
op(
X
) =
X
H
,
alpha
and
beta
are scalars,
A
,
B
and
C
are matrices:
op(
A
)
is an
m
-by-
k
matrix,
op(
B
)
is a
k
-by-
n
matrix,
C
is an
m
-by-
n
matrix.
See also: