Developer Reference

  • 2020.2
  • 07/15/2020
  • Public Content
Contents

mkl_sparse_?_trsm

Solves a system of linear equations with multiple right hand sides for a triangular sparse matrix.

Syntax

stat = mkl_sparse_s_trsm
(
operation
,
alpha
,
A
,
descr
,
layout
,
x
,
columns
,
ldx
,
y
,
ldy
)
stat = mkl_sparse_d_trsm
(
operation
,
alpha
,
A
,
descr
,
layout
,
x
,
columns
,
ldx
,
y
,
ldy
)
stat = mkl_sparse_c_trsm
(
operation
,
alpha
,
A
,
descr
,
layout
,
x
,
columns
,
ldx
,
y
,
ldy
)
stat = mkl_sparse_z_trsm
(
operation
,
alpha
,
A
,
descr
,
layout
,
x
,
columns
,
ldx
,
y
,
ldy
)
Include Files
  • mkl_spblas.f90
Description
The
mkl_sparse_?_trsm
routine solves a system of linear equations with multiple right hand sides for a triangular sparse matrix:
Y
:=
alpha
*inv(op(
A
))*
X
where:
alpha
is a scalar,
X
and
Y
are dense matrices,
A
is a sparse matrix, and
op
is a matrix modifier for matrix
A
.
The
mkl_sparse_?_mm
and
mkl_sparse_?_trsm
routines support these configurations:
Column-major dense matrix:
layout
=
SPARSE_LAYOUT_COLUMN_MAJOR
Row-major dense matrix:
layout
=
SPARSE_LAYOUT_ROW_MAJOR
0-based sparse matrix:
SPARSE_INDEX_BASE_ZERO
CSR
BSR: general non-transposed matrix multiplication only
All formats
1-based sparse matrix:
SPARSE_INDEX_BASE_ONE
All formats
CSR
BSR: general non-transposed matrix multiplication only
For sparse matrices in the BSR format, the supported combinations of (
indexing
,
block_layout
) are:
  • (
    SPARSE_INDEX_BASE_ZERO
    ,
    SPARSE_LAYOUT_ROW_MAJOR
    )
  • (
    SPARSE_INDEX_BASE_ONE
    ,
    SPARSE_LAYOUT_COLUMN_MAJOR
    )
Input Parameters
operation
C_INT
.
Specifies operation
op()
on input matrix.
SPARSE_OPERATION_NON_TRANSPOSE
Non-transpose,
op(
A
) =
A
.
SPARSE_OPERATION_TRANSPOSE
Transpose,
op(
A
) =
A
T
.
SPARSE_OPERATION_CONJUGATE_TRANSPOSE
Conjugate transpose,
op(
A
) =
A
H