Developer Reference

  • 2020.2
  • 07/15/2020
  • Public Content
Contents

mkl_?coosm

Solves a system of linear matrix equations for a sparse matrix in the coordinate format (deprecated).

Syntax

call mkl_scoosm
(
transa
,
m
,
n
,
alpha
,
matdescra
,
val
,
rowind
,
colind
,
nnz
,
b
,
ldb
,
c
,
ldc
)
call mkl_dcoosm
(
transa
,
m
,
n
,
alpha
,
matdescra
,
val
,
rowind
,
colind
,
nnz
,
b
,
ldb
,
c
,
ldc
)
call mkl_ccoosm
(
transa
,
m
,
n
,
alpha
,
matdescra
,
val
,
rowind
,
colind
,
nnz
,
b
,
ldb
,
c
,
ldc
)
call mkl_zcoosm
(
transa
,
m
,
n
,
alpha
,
matdescra
,
val
,
rowind
,
colind
,
nnz
,
b
,
ldb
,
c
,
ldc
)
Include Files
  • mkl.fi
Description
This routine is deprecated. Use mkl_sparse_?_trsmfrom the
Intel® MKL
Inspector-executor Sparse BLAS interface instead.
The
mkl_?coosm
routine solves a system of linear equations with matrix-matrix operations for a sparse matrix in the coordinate format:
C
:=
alpha
*inv(
A
)*
B
or
C
:=
alpha
*inv(
A
T
)*
B
,
where:
alpha
is scalar,
B
and
C
are dense matrices,
A
is a sparse upper or lower triangular matrix with unit or non-unit main diagonal,
A
T
is the transpose of
A
.
This routine supports a coordinate format both with one-based indexing and zero-based indexing.
Input Parameters
Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section
"Interfaces"
below.
transa
CHARACTER*1
.
Specifies the system of linear equations.
If
transa
=
'N'
or
'n'
, then the matrix-matrix product is computed as
C
:=
alpha
*inv(
A
)*
B
If
transa
=
'T'
or
't'
or
'C'
or
'c'
, then the matrix-vector product is computed as
C
:=
alpha
*inv(
A
T
)*
B
,
m
INTEGER
.
Number of rows of the matrix
A
.
n
INTEGER
.
Number of columns of the matrix
C
.
alpha
REAL
for
mkl_scoosm
.
DOUBLE PRECISION
for
mkl_dcoosm
.
COMPLEX
for
mkl_ccoosm
.
DOUBLE COMPLEX
for
mkl_zcoosm
.
Specifies the scalar
alpha
.
matdescra
CHARACTER
.
Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in
Table “Possible Values of the Parameter
matdescra
(
descra
)”
. Possible combinations of element values of this parameter are given i