Developer Reference

  • 2020.2
  • 07/15/2020
  • Public Content
Contents

?laqgb

Scales a general band matrix, using row and column scaling factors computed by
?gbequ
.

Syntax

call slaqgb
(
m
,
n
,
kl
,
ku
,
ab
,
ldab
,
r
,
c
,
rowcnd
,
colcnd
,
amax
,
equed
)
call dlaqgb
(
m
,
n
,
kl
,
ku
,
ab
,
ldab
,
r
,
c
,
rowcnd
,
colcnd
,
amax
,
equed
)
call claqgb
(
m
,
n
,
kl
,
ku
,
ab
,
ldab
,
r
,
c
,
rowcnd
,
colcnd
,
amax
,
equed
)
call zlaqgb
(
m
,
n
,
kl
,
ku
,
ab
,
ldab
,
r
,
c
,
rowcnd
,
colcnd
,
amax
,
equed
)
Include Files
  • mkl.fi
Description
The routine equilibrates a general
m
-by-
n
band matrix
A
with
kl
subdiagonals and
ku
superdiagonals using the row and column scaling factors in the vectors
r
and
c
.
Input Parameters
m
INTEGER
. The number of rows of the matrix
A
.
m
0
.
n
INTEGER
. The number of columns of the matrix
A
.
n
0
.
kl
INTEGER
. The number of subdiagonals within the band of
A
.
kl
0
.
ku
INTEGER
. The number of superdiagonals within the band of
A
.
ku
0
.
ab
REAL
for
slaqgb
DOUBLE PRECISION
for
dlaqgb
COMPLEX
for
claqgb
DOUBLE COMPLEX
for
zlaqgb
Array,
DIMENSION
(
ldab
,
n
). On entry, the matrix
A
in band storage, in rows 1 to
kl
+
ku
+1. The
j
-th column of
A
is stored in the
j
-th column of the array
ab
as follows:
ab
(
ku
+1+
i
-
j
,
j
) =
A
(
i
,
j
)
for
max(1,
j
-
k
u
) ≤ i ≤ min(
m
,
j
+
kl
)
.
ldab
INTEGER
. The leading dimension of the array
ab
.
lda