Developer Reference

  • 2020.2
  • 07/15/2020
  • Public Content
Contents

?tprfb

Applies a real or complex "triangular-pentagonal" blocked reflector to a real or complex matrix, which is composed of two blocks.

Syntax

call stprfb
(
side
,
trans
,
direct
,
storev
,
m
,
n
,
k
,
l
,
v
,
ldv
,
t
,
ldt
,
a
,
lda
,
b
,
ldb
,
work
,
ldwork
)
call dtprfb
(
side
,
trans
,
direct
,
storev
,
m
,
n
,
k
,
l
,
v
,
ldv
,
t
,
ldt
,
a
,
lda
,
b
,
ldb
,
work
,
ldwork
)
call ctprfb
(
side
,
trans
,
direct
,
storev
,
m
,
n
,
k
,
l
,
v
,
ldv
,
t
,
ldt
,
a
,
lda
,
b
,
ldb
,
work
,
ldwork
)
call ztprfb
(
side
,
trans
,
direct
,
storev
,
m
,
n
,
k
,
l
,
v
,
ldv
,
t
,
ldt
,
a
,
lda
,
b
,
ldb
,
work
,
ldwork
)
call tprfb
(
t
,
v
,
a
,
b
[
,
direct
]
[
,
storev
]
[
,
side
]
[
,
trans
]
)
Include Files
  • mkl.fi
    ,
    lapack.f90
Description
The
?tprfb
routine applies a real or complex "triangular-pentagonal" block reflector
H
,
H
T
, or
H
H
from either the left or the right to a real or complex matrix
C
, which is composed of two blocks
A
and
B
.
The block
B
is
m
-by-
n
. If
side
= 'R',
A
is
m
-by-
k
, and if
side
= 'L',
A
is of size
k
-by-
n
.
Table
The pentagonal matrix
V
is composed of a rectangular block
V1
and a trapezoidal block
V2
. The size of the trapezoidal block is determined by the parameter
l
, where 0≤
l
k
. if
l
=
k
, the
V2
block of
V
is triangular; if
l
=0, there is no trapezoidal block, thus
V
=
V1
is rectangular.
direct
='F'
direct
='B'
storev
='C'
Equation
V2
is upper trapezoidal (first
l
rows of
k
-by-
k
upper triangular)
Equation
V2