Developer Reference

  • 2020.2
  • 07/15/2020
  • Public Content
Contents

?gemqrt

Multiplies a general matrix by the orthogonal/unitary matrix Q of the QR factorization formed by
?geqrt
.

Syntax

call sgemqrt
(
side
,
trans
,
m
,
n
,
k
,
nb
,
v
,
ldv
,
t
,
ldt
,
c
,
ldc
,
work
,
info
)
call dgemqrt
(
side
,
trans
,
m
,
n
,
k
,
nb
,
v
,
ldv
,
t
,
ldt
,
c
,
ldc
,
work
,
info
)
call cgemqrt
(
side
,
trans
,
m
,
n
,
k
,
nb
,
v
,
ldv
,
t
,
ldt
,
c
,
ldc
,
work
,
info
)
call zgemqrt
(
side
,
trans
,
m
,
n
,
k
,
nb
,
v
,
ldv
,
t
,
ldt
,
c
,
ldc
,
work
,
info
)
call gemqrt
(
v
,
t
,
c
,
k
,
nb
[
,
trans
]
[
,
side
]
[
,
info
]
)
Include Files
  • mkl.fi
    ,
    lapack.f90
Description
The
?gemqrt
routine overwrites the general real or complex
m
-by-
n
matrix
C
with
side
='L'
side
='R'
trans
= 'N':
Q
*
C
C
*
Q
trans
= 'T':
Q
T
*
C
C
*
Q
T
trans
= 'C':
Q
H
*
C
C
*
Q