Developer Reference

  • 2020.2
  • 07/15/2020
  • Public Content
Contents

?ormbr

Multiplies an arbitrary real matrix by the real orthogonal matrix
Q
or
P
T
determined by
?gebrd
.

Syntax

call sormbr
(
vect
,
side
,
trans
,
m
,
n
,
k
,
a
,
lda
,
tau
,
c
,
ldc
,
work
,
lwork
,
info
)
call dormbr
(
vect
,
side
,
trans
,
m
,
n
,
k
,
a
,
lda
,
tau
,
c
,
ldc
,
work
,
lwork
,
info
)
call ormbr
(
a
,
tau
,
c
[
,
vect
]
[
,
side
]
[
,
trans
]
[
,
info
]
)
Include Files
  • mkl.fi
    ,
    lapack.f90
Description
Given an arbitrary real matrix
C
, this routine forms one of the matrix products
Q
*
C
,
Q
T
*
C
,
C
*
Q
,
C
*
Q
T
,
P
*
C
,
P
T
*
C
,
C
*
P
,
C
*
P
T
, where
Q
and
P
are orthogonal matrices computed by a call to gebrd. The routine overwrites the product on
C
.
Input Parameters
In the descriptions below,
r
denotes the order of
Q
or
P
T
:
If
side
=
'L'
,
r
=
m
; if
side
=
'R'
,
r
=
n
.
vect
CHARACTER*1
.
Must be
'Q'
or
'P'
.
If
vect
=
'Q'
, then
Q
or
Q
T
is applied to
C
.
If
vect
=
'P'
, then
P
or
P
T
is applied to
C
.
side
CHARACTER*1
.
Must be
'L'
or
'R'
.
If
side
=
'L'
, multipliers are applied to
C
from the left.
If
side
=
'R'
, they are applied to
C
from the right.
trans
CHARACTER*1
.
Must be
'N'
or
'T'
.
If
trans
=
'N'
, then
Q
or
P
is applied to
C
.
If
trans
=
'T'
, then
Q
T
or
P
T