Developer Reference

  • 2020.2
  • 07/15/2020
  • Public Content
Contents

?dttrsb

Solves a system of linear equations with a diagonally dominant tridiagonal coefficient matrix using the LU factorization computed by
?dttrfb
.

Syntax

call sdttrsb
(
trans
,
n
,
nrhs
,
dl
,
d
,
du
,
b
,
ldb
,
info
)
call ddttrsb
(
trans
,
n
,
nrhs
,
dl
,
d
,
du
,
b
,
ldb
,
info
)
call cdttrsb
(
trans
,
n
,
nrhs
,
dl
,
d
,
du
,
b
,
ldb
,
info
)
call zdttrsb
(
trans
,
n
,
nrhs
,
dl
,
d
,
du
,
b
,
ldb
,
info
)
call dttrsb
(
dl
,
d
,
du
,
b
[
,
trans
] [
,
info
]
)
Include Files
  • mkl.fi
    ,
    lapack.f90
Description
The
?dttrsb
routine solves the following systems of linear equations with multiple right hand sides for
X
:
A
*
X
=
B
if
trans
=
'N'
,
A
T
*
X
=
B
if
trans
=
'T'
,
A
H
*
X
=
B
if
trans
=
'C'
(for complex matrices only).
Before calling this routine, call
?dttrfb
to compute the factorization of
A
.
Input Parameters
trans
CHARACTER*1
.
Must be
'N'
or
'T'
or
'C'
.
Indicates the form of the equations solved for
X
:
If
trans
=
'N'
, then
A
*
X
=
B
.
If
trans
=
'T'
, then
A
T
*
X
=
B
.
If
trans
=
'C'
, then
A
H
*
X
=
B
.
n
INTEGER
.
The order of
A
;
n
0.