Developer Reference

  • 2020.2
  • 07/15/2020
  • Public Content
Contents

p?agemv

Computes a distributed matrix-vector product using absolute values for a general matrix.

Syntax

call psagemv
(
trans
,
m
,
n
,
alpha
,
a
,
ia
,
ja
,
desca
,
x
,
ix
,
jx
,
descx
,
incx
,
beta
,
y
,
iy
,
jy
,
descy
,
incy
)
call pdagemv
(
trans
,
m
,
n
,
alpha
,
a
,
ia
,
ja
,
desca
,
x
,
ix
,
jx
,
descx
,
incx
,
beta
,
y
,
iy
,
jy
,
descy
,
incy
)
call pcagemv
(
trans
,
m
,
n
,
alpha
,
a
,
ia
,
ja
,
desca
,
x
,
ix
,
jx
,
descx
,
incx
,
beta
,
y
,
iy
,
jy
,
descy
,
incy
)
call pzagemv
(
trans
,
m
,
n
,
alpha
,
a
,
ia
,
ja
,
desca
,
x
,
ix
,
jx
,
descx
,
incx
,
beta
,
y
,
iy
,
jy
,
descy
,
incy
)
Include Files
  • mkl_pblas.h
Description
The
p?agemv
routines perform a distributed matrix-vector operation defined as
sub(
y
) := abs(
alpha
)*abs(sub(
A
)')*abs(sub(
x
)) + abs(
beta
*sub(
y
)),
or
sub(
y
) := abs(
alpha
)*abs(sub(
A
)')*abs(sub(
x
)) + abs(
beta
*sub(
y
)),
or
sub(
y
) := abs(
alpha
)*abs(conjg(sub(
A
)'))*abs(sub(
x
)) + abs(
beta
*sub(
y
)),
where
alpha
and
beta
are scalars,
sub(
A
) is a
m
-by-
n
submatrix,
sub(
A
) =
A
(
ia
:
ia
+
m
-1,
ja
:
ja
+
n
-1)
,
sub(
x
)
and
sub(
y
)
are subvectors.
When
trans
= '
N
'
or
'
n
'
,
sub(
x
)
denotes
X
(
ix
:
ix
,
jx
:
jx
+
n
-1)
if
incx
=
m_x
, and
X
(
ix
:
ix
+
n
-1,
jx
:
jx
)
if
incx
= 1,
sub(
y
)
denotes