Developer Reference

  • 2020.2
  • 07/15/2020
  • Public Content
Contents

p?atrmv

Computes a distributed matrix-vector product using absolute values for a triangular matrix.

Syntax

call psatrmv
(
uplo
,
trans
,
diag
,
n
,
alpha
,
a
,
ia
,
ja
,
desca
,
x
,
ix
,
jx
,
descx
,
incx
,
beta
,
y
,
iy
,
jy
,
descy
,
incy
)
call pdatrmv
(
uplo
,
trans
,
diag
,
n
,
alpha
,
a
,
ia
,
ja
,
desca
,
x
,
ix
,
jx
,
descx
,
incx
,
beta
,
y
,
iy
,
jy
,
descy
,
incy
)
call pcatrmv
(
uplo
,
trans
,
diag
,
n
,
alpha
,
a
,
ia
,
ja
,
desca
,
x
,
ix
,
jx
,
descx
,
incx
,
beta
,
y
,
iy
,
jy
,
descy
,
incy
)
call pzatrmv
(
uplo
,
trans
,
diag
,
n
,
alpha
,
a
,
ia
,
ja
,
desca
,
x
,
ix
,
jx
,
descx
,
incx
,
beta
,
y
,
iy
,
jy
,
descy
,
incy
)
Include Files
  • mkl_pblas.h
Description
The
p?atrmv
routines perform one of the following distributed matrix-vector operations defined as
sub(
y
) := abs(
alpha
)*abs(sub(
A
))*abs(sub(
x
))+ abs(
beta
*sub(
y
))
, or
sub(
y
) := abs(
alpha
)*abs(sub(
A
)')*abs(sub(
x
))+ abs(
beta
*sub(
y
))
, or
sub(
y
) := abs(
alpha
)*abs(conjg(sub(
A
)'))*abs(sub(
x
))+ abs(
beta
*sub(
y
))
,
where:
alpha
and
beta
are scalars,
sub(
A
)
is a
n
-by-
n
unit, or non-unit, upper or lower triangular distributed matrix,
sub(
A
) =
A
(
ia
:
ia
+
n
-1,
ja
:
ja
+
n
-1)
,
sub(
x
)
is an
n
-element distributed vector.
sub(
x
)
denotes
X
(
ix
,
jx
:
jx
+
n
-1)
if
incx
=
m_x
, and
X
(
ix
:
ix
+
n
-1,
jx
)
if
incx
= 1
.
Input Parameters
uplo
(global)
CHARACTER*1
.
Specifies whether the distributed matrix
sub(
A
)
is upper or lower triangular:
if
uplo
=