Developer Reference

  • 2020.2
  • 07/15/2020
  • Public Content
Contents

p?gemv

Computes a distributed matrix-vector product using a general matrix.

Syntax

call psgemv
(
trans
,
m
,
n
,
alpha
,
a
,
ia
,
ja
,
desca
,
x
,
ix
,
jx
,
descx
,
incx
,
beta
,
y
,
iy
,
jy
,
descy
,
incy
)
call pdgemv
(
trans
,
m
,
n
,
alpha
,
a
,
ia
,
ja
,
desca
,
x
,
ix
,
jx
,
descx
,
incx
,
beta
,
y
,
iy
,
jy
,
descy
,
incy
)
call pcgemv
(
trans
,
m
,
n
,
alpha
,
a
,
ia
,
ja
,
desca
,
x
,
ix
,
jx
,
descx
,
incx
,
beta
,
y
,
iy
,
jy
,
descy
,
incy
)
call pzgemv
(
trans
,
m
,
n
,
alpha
,
a
,
ia
,
ja
,
desca
,
x
,
ix
,
jx
,
descx
,
incx
,
beta
,
y
,
iy
,
jy
,
descy
,
incy
)
Include Files
  • mkl_pblas.h
Description
The
p?gemv
routines perform a distributed matrix-vector operation defined as
sub(
y
) :=
alpha
*sub(
A
)*sub(
x
) +
beta
*sub(
y
),
or
sub(
y
) :=
alpha
*sub(
A
)'*sub(
x
) +
beta
*sub(
y
),
or
sub(
y
) :=
alpha
*conjg(sub(
A
)')*sub(
x
) +
beta
*sub(
y
),
where
alpha
and
beta
are scalars,
sub(
A
) is a
m
-by-
n
submatrix,
sub(
A
) =
A
(
ia
:
ia
+
m
-1,
ja
:
ja
+
n
-1)
,
sub(
x
)
and
sub(
y
)
are subvectors.
When
trans