Developer Reference

  • 2020.2
  • 07/15/2020
  • Public Content
Contents

p?symm

Performs a scalar-matrix-matrix product (one matrix operand is symmetric) and adds the result to a scalar-matrix product for distribute matrices.

Syntax

call pssymm
(
side
,
uplo
,
m
,
n
,
alpha
,
a
,
ia
,
ja
,
desca
,
b
,
ib
,
jb
,
descb
,
beta
,
c
,
ic
,
jc
,
descc
)
call pdsymm
(
side
,
uplo
,
m
,
n
,
alpha
,
a
,
ia
,
ja
,
desca
,
b
,
ib
,
jb
,
descb
,
beta
,
c
,
ic
,
jc
,
descc
)
call pcsymm
(
side
,
uplo
,
m
,
n
,
alpha
,
a
,
ia
,
ja
,
desca
,
b
,
ib
,
jb
,
descb
,
beta
,
c
,
ic
,
jc
,
descc
)
call pzsymm
(
side
,
uplo
,
m
,
n
,
alpha
,
a
,
ia
,
ja
,
desca
,
b
,
ib
,
jb
,
descb
,
beta
,
c
,
ic
,
jc
,
descc
)
Include Files
  • mkl_pblas.h
Description
The
p?symm
routines perform a matrix-matrix operation with distributed matrices. The operation is defined as
sub(
C
):=
alpha
*sub(
A
)*sub(
B
)+
beta
*sub(
C
),
or
sub(
C
):=
alpha
*sub(
B
)*sub(
A
)+
beta
*sub(
C
),
where:
alpha
and
beta
are scalars,
sub(
A
)
is a symmetric distributed matrix,
sub(
A
)=
A
(
ia
:
ia
+
m
-1,
ja
:
ja
+
m
-1)
, if
side
=
'L'
, and
sub(
A
)=
A
(
ia
:
ia
+
n
-1,
ja
:
ja
+
n
-1)
, if
side
=
'R'
.
sub(
B
)
and
sub(
C
)
are
m
-by-
n