Developer Reference

  • 2020.2
  • 07/15/2020
  • Public Content
Contents

p?org2l/p?ung2l

Generates all or part of the orthogonal/unitary matrix Q from a QL factorization determined by
p?geqlf
(unblocked algorithm).

Syntax

call psorg2l
(
m
,
n
,
k
,
a
,
ia
,
ja
,
desca
,
tau
,
work
,
l
work
,
info
)
call pdorg2l
(
m
,
n
,
k
,
a
,
ia
,
ja
,
desca
,
tau
,
work
,
l
work
,
info
)
call pcung2l
(
m
,
n
,
k
,
a
,
ia
,
ja
,
desca
,
tau
,
work
,
l
work
,
info
)
call pzung2l
(
m
,
n
,
k
,
a
,
ia
,
ja
,
desca
,
tau
,
work
,
l
work
,
info
)
Description
The
p?org2l/p?ung2l
routine
generates an
m
-by-
n
real/complex distributed matrix
Q
denoting
A
(
ia
:
ia
+
m
-1,
ja
:
ja
+
n
-1)
with orthonormal columns, which is defined as the last
n
columns of a product of
k
elementary reflectors of order
m
:
Q
=
H
(
k
)*...*
H
(2)*
H
(1) as returned by
p?geqlf
.
Input Parameters
m
(global)
INTEGER
.
The number of rows in the distributed submatrix
Q
.
m
0
.
n
(global)
INTEGER
.
The number of columns in the distributed submatrix
Q
.
m
n
0
.
k
(global)
INTEGER
.
The number of elementary reflectors whose product defines the matrix
Q
.
n
k
0
.
a
REAL
for
psorg2l
DOUBLE PRECISION
for
pdorg2l
COMPLEX
for
pcung2l
COMPLEX*16
for
pzung2l
.
Pointer into the local memory to an array of size
(
lld_a
,
LOCc
(
ja
+
n
-1))
.
On entry, the
j
-th column must contain the vector that defines the elementary reflector
H
(
j
),
ja
+
n-k
j
ja
+
n-k
, as returned by
p?geqlf
in the
k
columns of its distributed matrix argument
A
(
ia
:*,
ja
+
n-k
:
ja
+
n
-1)
.
ia
(global)
INTEGER
.
The row index in the global matrix
A
indicating the first row of sub(
A
).
ja
(global)
INTEGER
.
The column index in the global matrix
A
indicating the first column of sub(
A
).
desca
(global and local)
INTEGER
array of size
dlen_
. The array descriptor for the distributed matrix
A
.