Developer Reference

  • 2020.2
  • 07/15/2020
  • Public Content
Contents

p?org2r/p?ung2r

Generates all or part of the orthogonal/unitary matrix Q from a QR factorization determined by
p?geqrf
(unblocked algorithm).

Syntax

call psorg2r
(
m
,
n
,
k
,
a
,
ia
,
ja
,
desca
,
tau
,
work
,
l
work
,
info
)
call pdorg2r
(
m
,
n
,
k
,
a
,
ia
,
ja
,
desca
,
tau
,
work
,
l
work
,
info
)
call pcung2r
(
m
,
n
,
k
,
a
,
ia
,
ja
,
desca
,
tau
,
work
,
l
work
,
info
)
call pzung2r
(
m
,
n
,
k
,
a
,
ia
,
ja
,
desca
,
tau
,
work
,
l
work
,
info
)
Description
The
p?org2r/p?ung2r
routine
generates an
m
-by-
n
real/complex matrix
Q
denoting
A
(
ia
:
ia
+
m
-1,
ja
:
ja
+
n
-1)
with orthonormal columns, which is defined as the first
n
columns of a product of
k
elementary reflectors of order
m
:
Q
=
H
(1)*
H
(2)*...*
H
(
k
)
as returned by
p?geqrf
.
Input Parameters
m
(global)
INTEGER
.
The number of rows in the distributed submatrix
Q.
m
0
.
n
(global)
INTEGER
.
The number of columns in the distributed submatrix
Q
.
m
n
0
.
k
(global)
INTEGER
.
The number of elementary reflectors whose product defines the matrix
Q
.
n
k
0
.
a
REAL
for
psorg2r
DOUBLE PRECISION
for
pdorg2r
COMPLEX
for
pcung2r
COMPLEX*16
for
pzung2r
.
Pointer into the local memory to an array of size
(
lld_a
,
LOCc
(
ja
+
n
-1))
On entry, the
j
-th column