Developer Reference

  • 2020.2
  • 07/15/2020
  • Public Content
Contents

p?gbtrs

Solves a system of distributed linear equations with a general band matrix, using the
LU
factorization computed by
p?gbtrf
.

Syntax

call psgbtrs
(
trans
,
n
,
bwl
,
bwu
,
nrhs
,
a
,
ja
,
desca
,
ipiv
,
b
,
ib
,
descb
,
af
,
laf
,
work
,
lwork
,
info
)
call pdgbtrs
(
trans
,
n
,
bwl
,
bwu
,
nrhs
,
a
,
ja
,
desca
,
ipiv
,
b
,
ib
,
descb
,
af
,
laf
,
work
,
lwork
,
info
)
call pcgbtrs
(
trans
,
n
,
bwl
,
bwu
,
nrhs
,
a
,
ja
,
desca
,
ipiv
,
b
,
ib
,
descb
,
af
,
laf
,
work
,
lwork
,
info
)
call pzgbtrs
(
trans
,
n
,
bwl
,
bwu
,
nrhs
,
a
,
ja
,
desca
,
ipiv
,
b
,
ib
,
descb
,
af
,
laf
,
work
,
lwork
,
info
)
Include Files
Description
The
p?gbtrs
routine
solves a system of distributed linear equations with a general band distributed matrix sub(
A
) =
A
(1:
n
,
ja
:
ja
+
n
-1) using the
LU
factorization computed by p?gbtrf.
The system has one of the following forms specified by
trans
:
sub(
A
)*
X
= sub(
B
) (no transpose),
sub(
A
)
T
*X = sub(
B
) (transpose),
sub(
A
)
H
*
X
= sub(
B
) (conjugate transpose),
where sub(
B
) =
B
(
ib
:
ib
+
n
-1, 1:
nrhs
).
Before calling this
routine
,you must call
p?gbtrf
to compute the
LU
factorization of sub(
A
).
Input Parameters
trans
(global)
CHARACTER*1
.
Must be