mkl_?getrfnp_compact
mkl_?getrfnp_compact
The routine computes the LU factorization, without pivoting, of a set of general, m x n matrices that have been stored in Compact format (see Compact Format).
Syntax
void
mkl_sgetrfnp_compact
(
MKL_LAYOUT
layout
,
MKL_INT
m
,
MKL_INT
n
,
float
*
ap
,
MKL_INT
ldap
,
MKL_INT
*
info
,
MKL_COMPACT_PACK
format
,
MKL_INT
nm
);
void
mkl_dgetrfnp_compact
(
MKL_LAYOUT
layout
,
MKL_INT
m
,
MKL_INT
n
,
double
*
ap
,
MKL_INT
ldap
,
MKL_INT
*
info
,
MKL_COMPACT_PACK
format
,
MKL_INT
nm
);
void
mkl_cgetrfnp_compact
(
MKL_LAYOUT
layout
,
MKL_INT
m
,
MKL_INT
n
,
float
*
ap
,
MKL_INT
ldap
,
MKL_INT
*
info
,
MKL_COMPACT_PACK
format
,
MKL_INT
nm
);
void
mkl_zgetrfnp_compact
(
MKL_LAYOUT
layout
,
MKL_INT
m
,
MKL_INT
n
,
double
*
ap
,
MKL_INT
ldap
,
MKL_INT
*
info
,
MKL_COMPACT_PACK
format
,
MKL_INT
nm
);
Description
The
mkl_?getrfnp_compact
routine calculates the LU factorizations of a set of nm
general (m x n) matrices A, stored in Compact format, as Ac
= Lc
*Uc
. The factorization (output) data will also be stored in Compact format.Compact routines have some limitations; see Numerical Limitations.
Input Parameters
- layout
- Specifies whether two-dimensional array storage is row-major (MKL_ROW_MAJOR) or column-major (MKL_COL_MAJOR).
- m
- The number of rows of A;m≥ 0.
- n
- The number of columns of A;n≥ 0.
- ap
- Points to the beginning of the the array which stores nm Acmatrices.See Compact Format for more details.
- ldap
- Leading dimension of Ac.
- format
- Specifies the format of the compact matrices. See Compact Format ormkl_get_format_compactfor details.
- nm
- Total number of matrices stored in Compact format.
Application Notes:
Before calling this routine,
mkl_?gepack_compact must be called. After calling this routine,
mkl_?geunpack_compact should be called, unless another compact
routine will be subsequently called for the Compact format
matrices.
The approximate number of floating-point
operations for real flavors is:
nm*(2/3)n
3
, if m = n, nm*(1/3)n
2
(3m-n), if m > n, nm*(1/3)m
2
(3n-m), if m < n. The number of operations for complex flavors is
four times greater. Directly after calling this routine, you can
call the following:
mkl_?getrinp_compact, for computing the inverse
of the
nm
input matrices in Compact formatOutput Parameters
- ap
- On exit, Acis overwritten by its factorization data.appoints to the beginning ofnmLcand Ucfactors of Ac. The unit diagonal elements of Lcare not stored.
- info
- The parameter is not currently used in this routine. It is reserved for the future use.