mkl_sparse_?_syprd
mkl_sparse_?_syprd
Computes the symmetric triple product of a sparse matrix and a dense matrix and stores the result as a dense matrix.
Syntax
sparse_status_t mkl_sparse_s_syprd
(
const
sparse_operation_t
op
,
const
sparse_matrix_t
A
,
const
float
*B
,
const
sparse_layout_t
layoutB
,
const
MKL_INT
ldb
,
const
float
alpha
,
const
float
beta
,
float
*C
,
const
sparse_layout_t
layoutC
,
const
MKL_INT
ldc
);
sparse_status_t mkl_sparse_d_syprd
(
const
sparse_operation_t
op
,
const
sparse_matrix_t
A
,
const
double
*B
,
const
sparse_layout_t
layoutB
,
const
MKL_INT
ldb
,
const
double
alpha
,
const
double
beta
,
double
*C
,
const
sparse_layout_t
layoutC
,
const
MKL_INT
ldc
);
sparse_status_t mkl_sparse_c_syprd
(
const
sparse_operation_t
op
,
const
sparse_matrix_t
A
,
const
MKL_Complex8
*B
,
const
sparse_layout_t
layoutB
,
const
MKL_INT
ldb
,
const
MKL_Complex8
alpha
,
const
MKL_Complex8
beta
,
MKL_Complex8
*C
,
const
sparse_layout_t
layoutC
,
const
MKL_INT
ldc
);
sparse_status_t mkl_sparse_z_syprd
(
const
sparse_operation_t
op
,
const
sparse_matrix_t
A
,
const
MKL_Complex16
*B
,
const
sparse_layout_t
layoutB
,
const
MKL_INT
ldb
,
const
MKL_Complex16
alpha
,
const
MKL_Complex16
beta
,
MKL_Complex16
*C
,
const
sparse_layout_t
layoutC
,
const
MKL_INT
ldc
);
Include Files
- mkl_spblas.h
Description
The
mkl_sparse_?_syprd
routine performs a multiplication of three sparse matrices that results in a symmetric or Hermitian matrix, C
.orC:=alpha*A*B*op(A) + beta*C
depending on the matrix modifierC:=alpha*op(A)*B*A + beta*C
operation
. Here A
is a sparse matrix, B
and C
are dense and symmetric (or Hermitian) matrices. op
is the transpose (real precision) or conjugate transpose (complex precision) operator.This routine is not supported for sparse matrices in COO or CSC formats. It supports only CSR and BSR formats. In addition, this routine supports only the sorted CSR and sorted BSR formats for the input matrix. If the data is unsorted, call the mkl_sparse_order routine before either mkl_sparse_sypr or mkl_sparse_?_syprd.
Input Parameters
- operation
- Specifies operation on the input sparse matrix.SPARSE_OPERATION_NON_TRANSPOSENon-transpose case.C:=alpha*A*B*(AT)+beta*Cfor real precision.C:=alpha*A*B*(AH)+beta*Cfor complex precision.SPARSE_OPERATION_TRANSPOSETranspose case. This is not supported for complex matrices.C:=alpha*(AT)*B*A+beta*CSPARSE_OPERATION_CONJUGATE_TRANSPOSEConjugate transpose case. This is not supported for real matrices.C:=alpha*(AH)*B*A+beta*C
- A
- Handle which contains the sparse matrixA.
- B
- Input dense matrix. Only the upper triangular part of the matrix is used for computation.
- denselayoutB
- Structure that describes the storage scheme for the dense matrix.SPARSE_LAYOUT_COLUMN_MAJORStore elements in a column-major layout.SPARSE_LAYOUT_ROW_MAJORStore elements in a row-major layout.
- ldb
- Leading dimension of matrix B.
- alpha
- Scalar parameter.
- beta
- Scalar parameter.Since the upper triangular part of matrixCis the only portion that is processed, set real values ofalphaandbetain the complex case to obtain the Hermitian matrix.
- denselayoutC
- Structure that describes the storage scheme for the dense matrix.SPARSE_LAYOUT_COLUMN_MAJORStore elements in a column-major layout.SPARSE_LAYOUT_ROW_MAJORStore elements in a row-major layout.
- ldc
- Leading dimension of matrix C.
Output Parameters
- C
- Handle which contains the resulting dense matrix. Only the upper-triangular part of the matrix is computed.
Return Values
The function returns a value indicating whether the operation was successful, or the reason why it failed.
- SPARSE_STATUS_SUCCESS
- The operation was successful.
- SPARSE_STATUS_NOT_INITIALIZED
- The routine encountered an empty handle or matrix array.
- SPARSE_STATUS_ALLOC_FAILED
- The internal memory allocation failed.
- SPARSE_STATUS_INVALID_VALUE
- The input parameters contain an invalid value.
- SPARSE_STATUS_EXECUTION_FAILED
- The execution failed.
- SPARSE_STATUS_INTERNAL_ERROR
- An error occurred in the implementation of the algorithm.
- SPARSE_STATUS_NOT_SUPPORTED
- The requested operation is not supported.