mkl_?bsrsm
mkl_?bsrsm
Solves a system of linear matrix equations for a sparse matrix in the BSR format (deprecated).
Syntax
void
mkl_sbsrsm
(
const
char
*transa
,
const
MKL_INT
*m
,
const
MKL_INT
*n
,
const
MKL_INT
*lb
,
const
float
*alpha
,
const
char
*matdescra
,
const
float
*val
,
const
MKL_INT
*indx
,
const
MKL_INT
*pntrb
,
const
MKL_INT
*pntre
,
const
float
*b
,
const
MKL_INT
*ldb
,
float
*c
,
const
MKL_INT
*ldc
);
void
mkl_dbsrsm
(
const
char
*transa
,
const
MKL_INT
*m
,
const
MKL_INT
*n
,
const
MKL_INT
*lb
,
const
double
*alpha
,
const
char
*matdescra
,
const
double
*val
,
const
MKL_INT
*indx
,
const
MKL_INT
*pntrb
,
const
MKL_INT
*pntre
,
const
double
*b
,
const
MKL_INT
*ldb
,
double
*c
,
const
MKL_INT
*ldc
);
void
mkl_cbsrsm
(
const
char
*transa
,
const
MKL_INT
*m
,
const
MKL_INT
*n
,
const
MKL_INT
*lb
,
const
MKL_Complex8
*alpha
,
const
char
*matdescra
,
const
MKL_Complex8
*val
,
const
MKL_INT
*indx
,
const
MKL_INT
*pntrb
,
const
MKL_INT
*pntre
,
const
MKL_Complex8
*b
,
const
MKL_INT
*ldb
,
MKL_Complex8
*c
,
const
MKL_INT
*ldc
);
void
mkl_zbsrsm
(
const
char
*transa
,
const
MKL_INT
*m
,
const
MKL_INT
*n
,
const
MKL_INT
*lb
,
const
MKL_Complex16
*alpha
,
const
char
*matdescra
,
const
MKL_Complex16
*val
,
const
MKL_INT
*indx
,
const
MKL_INT
*pntrb
,
const
MKL_INT
*pntre
,
const
MKL_Complex16
*b
,
const
MKL_INT
*ldb
,
MKL_Complex16
*c
,
const
MKL_INT
*ldc
);
Include Files
- mkl.h
Description
This routine is deprecated. Use mkl_sparse_?_trsmfrom the Inspector-executor Sparse BLAS interface instead.
Intel® oneAPI Math Kernel Library
The
mkl_?bsrsm
routine solves a system of linear equations with matrix-matrix operations for a sparse matrix in the BSR format: C := alpha*inv(A)*B
or
C := alpha*inv(AT)*B,
where:
alpha
is scalar, B
and C
are dense matrices, A
is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, A
T
is the transpose of A
.This routine supports a BSR format both with one-based indexing and zero-based indexing.
Input Parameters
- transa
- Specifies the operation.Ifortransa='N''n', then the matrix-matrix product is computed asC:=alpha*inv(A)*B.Ifortransa='T''t'or'C'or'c', then the matrix-vector product is computed as.C:=alpha*inv(AT)*B
- m
- Number of block columns of the matrixA.
- n
- Number of columns of the matrixC.
- lb
- Size of the block in the matrixA.
- alpha
- Specifies the scalaralpha.
- matdescra
- Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given inTable “Possible Values of the Parameter. Possible combinations of element values of this parameter are given inmatdescra(descra)”Table “Possible Combinations of Element Values of the Parameter.matdescra”
- val
- Array containing elements of non-zero blocks of the matrixA. Its length is equal to the number of non-zero blocks in the matrixAmultiplied by. Refer to thelb*lbvaluesarray description in BSR Format for more details.The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.
- indx
- For one-based indexing, array containing the column indices plus one for each non-zero element of the matrixA. For zero-based indexing, array containing the column indices for each non-zero element of the matrixA.Its length is equal to the number of non-zero blocks in the matrixA.Refer to thecolumnsarray description in BSR Format for more details.
- pntrb
- Array of lengthm.This array contains row indices, such thatis the first index of block rowpntrb[i] -pntrb[0]iin the arrayindx.Refer topointerBarray description in BSR Format for more details.
- pntre
- Array of lengthm.This array contains row indices, such thatis the last index of block rowpntre[i] -pntrb[0] - 1iin the arraysvalandindx.Refer topointerEarray description in BSR Format for more details.
- b
- Array, sizefor one-based indexing, sizeldb*nfor zero-based indexing.m*ldbOn entry the leadingm-by-npart of the arraybmust contain the matrixB.
- ldb
- Specifies the leading dimension (in blocks) ofbas declared in the calling (sub)program.
- ldc
- Specifies the leading dimension (in blocks) ofcas declared in the calling (sub)program.
Output Parameters
- c
- Array, sizefor one-based indexing, sizeldc*nfor zero-based indexing.m*ldcThe leadingm-by-npart of the arrayccontains the output matrixC.