mkl_?coosm
mkl_?coosm
Solves a system of linear matrix equations for a sparse matrix in the coordinate format (deprecated).
Syntax
void
mkl_scoosm
(
const
char
*transa
,
const
MKL_INT
*m
,
const
MKL_INT
*n
,
const
float
*alpha
,
const
char
*matdescra
,
const
float
*val
,
const
MKL_INT
*rowind
,
const
MKL_INT
*colind
,
const
MKL_INT
*nnz
,
const
float
*b
,
const
MKL_INT
*ldb
,
float
*c
,
const
MKL_INT
*ldc
);
void
mkl_dcoosm
(
const
char
*transa
,
const
MKL_INT
*m
,
const
MKL_INT
*n
,
const
double
*alpha
,
const
char
*matdescra
,
const
double
*val
,
const
MKL_INT
*rowind
,
const
MKL_INT
*colind
,
const
MKL_INT
*nnz
,
const
double
*b
,
const
MKL_INT
*ldb
,
double
*c
,
const
MKL_INT
*ldc
);
void
mkl_ccoosm
(
const
char
*transa
,
const
MKL_INT
*m
,
const
MKL_INT
*n
,
const
MKL_Complex8
*alpha
,
const
char
*matdescra
,
const
MKL_Complex8
*val
,
const
MKL_INT
*rowind
,
const
MKL_INT
*colind
,
const
MKL_INT
*nnz
,
const
MKL_Complex8
*b
,
const
MKL_INT
*ldb
,
MKL_Complex8
*c
,
const
MKL_INT
*ldc
);
void
mkl_zcoosm
(
const
char
*transa
,
const
MKL_INT
*m
,
const
MKL_INT
*n
,
const
MKL_Complex16
*alpha
,
const
char
*matdescra
,
const
MKL_Complex16
*val
,
const
MKL_INT
*rowind
,
const
MKL_INT
*colind
,
const
MKL_INT
*nnz
,
const
MKL_Complex16
*b
,
const
MKL_INT
*ldb
,
MKL_Complex16
*c
,
const
MKL_INT
*ldc
);
Include Files
- mkl.h
Description
This routine is deprecated. Use mkl_sparse_?_trsmfrom the Inspector-executor Sparse BLAS interface instead.
Intel® oneAPI Math Kernel Library
The
mkl_?coosm
routine solves a system of linear equations with matrix-matrix operations for a sparse matrix in the coordinate format: C := alpha*inv(A)*B
or
C := alpha*inv(AT)*B,
where:
alpha
is scalar, B
and C
are dense matrices, A
is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, A
T
is the transpose of A
.This routine supports a coordinate format both with one-based indexing and zero-based indexing.
Input Parameters
- transa
- Specifies the system of linear equations.Ifortransa='N''n', then the matrix-matrix product is computed asC:=alpha*inv(A)*BIfortransa='T''t'or'C'or'c', then the matrix-vector product is computed as,C:=alpha*inv(AT)*B
- m
- Number of rows of the matrixA.
- n
- Number of columns of the matrixC.
- alpha
- Specifies the scalaralpha.
- matdescra
- Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given inTable “Possible Values of the Parameter. Possible combinations of element values of this parameter are given inmatdescra(descra)”Table “Possible Combinations of Element Values of the Parameter.matdescra”
- val
- Array of lengthnnz, contains non-zero elements of the matrixAin the arbitrary order.Refer tovaluesarray description in Coordinate Format for more details.
- rowind
- Array of lengthnnz.For one-based indexing, contains the row indices plus one for each non-zero element of the matrixA.For zero-based indexing, contains the row indices for each non-zero element of the matrixA.Refer torowsarray description in Coordinate Format for more details.
- colind
- Array of lengthnnz.For one-based indexing, contains the column indices plus one for each non-zero element of the matrixAFor zero-based indexing, contains the row indices for each non-zero element of the matrixARefer tocolumnsarray description in Coordinate Format for more details.
- nnz
- Specifies the number of non-zero element of the matrixA.Refer tonnzdescription in Coordinate Format for more details.
- b
- Array, sizeldbbynfor one-based indexing, and(for zero-based indexing.m,ldb)Before entry the leadingm-by-npart of the arraybmust contain the matrixB.
- ldb
- Specifies the leading dimension ofbfor one-based indexing, and the second dimension ofbfor zero-based indexing, as declared in the calling (sub)program.
- ldc
- Specifies the leading dimension ofcfor one-based indexing, and the second dimension ofcfor zero-based indexing, as declared in the calling (sub)program.
Output Parameters
- c
- Array, sizeldcbynfor one-based indexing, and(for zero-based indexing.m,ldc)The leadingm-by-npart of the arrayccontains the output matrixC.